高三数学测试(二)

2021.10

(全卷满分150分,考试时间120分钟)

- 一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符 合要求).
- 1. 已知集合 $A = \{-2, -1, 0, 1, 2\}$, $B = \{x | (x-2)(x+1) < 0\}$,则 $A \cap B = (x | (x-2)(x+1) < 0)$,则 $A \cap B = (x | (x-2)(x+1) < 0)$
- A. $\{-1,0\}$ B. $\{0,1\}$ C. $\{-1,0,1\}$ D. $\{0,1,2\}$

- 2. "ab > 1"是"a > 1, b > 1"的(
 - A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

- D. 既不充分也不必要条件
- 3. $(2x-1)^4$ 的展开式中 x^3 的系数为 ()

A. 4

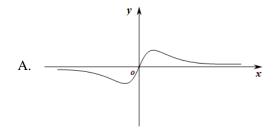
- B. -4
- C.32

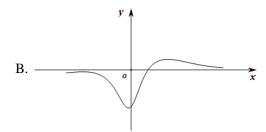
D.-32

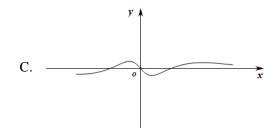
4. 对数的创始人约翰 奈皮尔(John Napier, 1550—1617) 是苏格兰数学家. 直到 18 世纪, 瑞士数学 家欧拉发现了指数与对数的互逆关系. 人们才认识到指数与对数之间的天然关系. 对数发现前夕, 随 着科技的发展,天文学家做了很多的观察,需要进行很多计算,而且要算几个大数的连乘,往往需要 花费很长时间. 基于这种需求, 1594年, 奈皮尔运用了独创的方法构造出对数方法. 现在随着科学技 术的需要,一些幂的值用数位表示,譬如 $2^{10}=1024\in(10^3,10^4)$,所以 2^{10} 的数位为 4 (一个自然数数 位的个数,叫做数位).则 2021¹⁰⁰的数位是().(注 lg 2021 ≈ 3.30557)

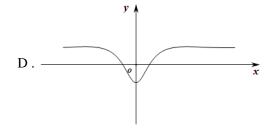
- C. 331
- D. 332

5. 函数 $f(x) = \frac{x - 2\sin x}{x^2 + 1}$ 的图像大致为(









- B. b < c < a C. a < b < c D. a < c < bA. c < b < a7. 已知 $\triangle ABC$ 的内角 A,B,C 所对的边分别为 a,b,c 若 $b\sin\frac{B+C}{2}=a\sin B$,且 $\triangle ABC$ 内切圆面积为 9π , 则 ΔABC 面积的最小值为 (C. $9\sqrt{3}$ D. $27\sqrt{3}$ A. $\sqrt{3}$ B. $3\sqrt{3}$ 8. 已知函数 $f(x) = \sqrt{1-x} + a, x \in [m,n]$ 的值域为 [m,n](m < n),则实数 a 的取值范围为(A. $\left(-\frac{3}{4}, \frac{1}{4}\right)$ B. $\left(-1, -\frac{1}{4}\right)$ C. $\left[0, \frac{1}{4}\right)$ D. $\left(-\frac{3}{4}, 0\right]$ 二、多项选择题(本大题共 4 小题,每小题 5 分,共 20 分,在每小题给出的选项中,有多项符合题目 要求.全部选对的得5分,有选错的得0分,部分选对的得2分) 9. 下列命题中, 真命题的是(A. $\forall \alpha, \beta \in \mathbb{R}, \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$ B. $\exists x_0 \in R, e^{x_0} \leq 1$ D. $\exists \alpha_0 \in R, \sin \alpha_0 = \frac{\pi}{2}$ C. $\forall x \in R, x^3 > 0$ 10. 不解三角形,则下列对三角形解的个数的判断中正确的是(A. $a = 30, b = 25, A = 150^{\circ}$,有一解 B. $a = 7, b = 14, A = 30^{\circ}$, 有两解 C. $a = 6, b = 9, A = 45^{\circ}$, 有两解 D. $a = \sqrt{3}, b = \sqrt{6}, A = 60^{\circ}$, 无解 11. 已知正三棱锥 S – ABC 的底面边长为 6,侧棱长为 $4\sqrt{3}$,则下列说法中正确的有(A. 侧棱 SA 与底面 ABC 所成的角为 $\frac{\pi}{4}$ B. 侧面 SAB 与底面 ABC 所成角的正切值为 $2\sqrt{3}$ C. 正三棱锥 S-ABC 外接球的表面积为 64π D. 正三棱锥 S - ABC 内切球的半径为 $\sqrt{13} - 1$ 12. 已知函数 $f(x) = \sqrt{3}\sin|x| + |\cos x|$,下列说法正确的有(
 - A. 函数 f(x) 在 $[\frac{2}{3}\pi, \frac{7}{6}\pi]$ 上单调递减
 - B. 函数 f(x) 是最小正周期为 2π 的周期函数
 - C. 若1 < m < 2 , 则方程 f(x) = m 在区间 $[0,\pi]$ 内,最多有 4 个不同的根
 - D. 函数 f(x) 在区间[-10,10]内, 共有 6 个零点

- 三、填空题(本大题共4小题,每小题5分,共20分)
- 13. 已知 p:x>1 是 q:x>a 的充分不必要条件,则实数 a 的取值范围是 \triangle .
- 14. 已知 α 为锐角,若 $\sin \alpha = \frac{3}{5}$,则 $\tan(\alpha \frac{\pi}{4})$ 的值为<u></u>.
- 15. 在 $\triangle ABC$ 中,已知角 A 为钝角,且 $4\sin B\sin C = \sin^2 A$, $\sin B + \sin C = m\sin A$, 则实数 m 的取值 范围为_ \blacktriangle _.
- 16. 已知不等式 $(e^x ax)(x^2 + ax + 1) \ge 0$ 对任意 x > 0 恒成立,则实数 a 的取值范围是 ▲ .

解答题(本大题共6小题,计70分.解答应写出必要的文字说明、证明过程或演算步骤)

17. (本小题满分 10 分)

已知函数
$$f(x) = \frac{1}{2}x - \sin x$$

- (1) 求函数 f(x) 的图象在点 $\left(\frac{\pi}{3}, f\left(\frac{\pi}{3}\right)\right)$ 处的切线方程;
- (2) 求该函数 f(x) 在 $x \in \left[0, \frac{\pi}{2}\right]$ 上的最值.

18. (本小题满分 12 分)

为丰富师生的课余文化生活,倡导"每一天健身一小时,健康生活一辈子",深入开展健身运动,增强学生的身体素质和团队的凝聚力,某中学将举行趣味运动会。某班共有 10 名同学报名参加"四人五足"游戏,其中男同学 6 名,女同学 4 名.按照游戏规则,每班只能选 4 名同学参加这个游戏,因此要从这 10 名报名的同学中随机选出 4 名,记其中男同学的人数为 *X* .

- (1) 求选出的 4 名同学中只有女生的概率;
- (2) 求随机变量 X 的分布列及数学期望.
- 19. (本小题满分 12 分)

已知函数
$$f(x) = 6\cos x \sin\left(x - \frac{\pi}{6}\right) + \frac{3}{2}$$
.

- (1) 求 f(x)的最小正周期和对称轴方程;
- (2) 若函数 y = f(x) a 在 $x \in \left[-\frac{\pi}{12}, \frac{5\pi}{12} \right]$ 存在零点,求实数 a 的取值范围.

20. (本小题满分 12 分)

已知函数 $f(x) = 2^x + m \cdot 2^{-x}$ 是奇函数.

- (1) 求 m 的值;
- (2) 若在 $\triangle ABC$ 中存在角 A ,使得 $f(\lambda + \lambda \sin A) + f(-\cos^2 A 1) > 0$,求实数 λ 的取值范围.

21. (本小题满分 12 分)

已知 a,b,c 分别为 $\triangle ABC$ 三个内角 A,B,C 的对边,且满足 $c^2 = a^2 + ab$, 记 $\triangle ABC$ 的面积为 S.

- (1) 求证: C = 2A;
- (2) 若 $\triangle ABC$ 为锐角三角形,b=4,且 $\lambda < S$ 恒成立,求实数 λ 的范围.

22. (本小题满分 12 分)

已知函数 $f(x) = x^3 + ke^x (k \in \mathbf{R})$, f'(x) 为 f(x) 的导函数.

- (1) 当k=1时,求函数 $g(x)=xf'(x)-2f(x)-x^3+x+2$ 的单调区间;
- (2) 当 $k \ge 0$ 时,求证:对任意的 $x_1, x_2 \in \mathbf{R}$,且 $x_1 > x_2$,有 $\frac{f(x_1) f(x_2)}{x_1 x_2} < \frac{f'(x_1) + f'(x_2)}{2}$.