江苏省仪征中学 2024—2025 学年度第一学期高二化学导学案 专题 2 第二单元 化学反应的方向与限度

第二节 化学平衡状态

研制人:朱长飞 审核人:杨震

班级:	姓名:	学号:	授课日期:	
本课在课程标准中的	的表述:			
能描述化学平衡	新状态,判断化学反应 ;	是否达到平衡。		
【学习目标】				
	应的可逆性及化学平衡	 的建立。		
2. 掌握化学平	衡的特征。			
【学习过程】	/ (河)			
	(阅读教材 P58-60)			
一、可逆反应				
1. 定义	nr Ak 4			
	既能问力回	进行,问时 <u>又能问_</u>	方向进行的反应。	
2. 表示方法				
可逆反应方程式	式常用"━"连接,把	从左向右进行的反应	ī称为,把从右向左进行的反应称为_	∘
3. 特点				
(1)同一条件下。	,正反应和逆反应	0		
(2)反应	进行到底,反应物	实现完全	转化。	
(3)反应体系中,	,与化学反应有关的各	种物质	°	
(4)反应达到限	度时,反应 <u></u>	0		
二、化学平衡状态				
1. 化学平衡的建立	•			
(1)化学平衡的	建立过程			
在一定条件一	下,把某一可逆反应的。	反应物加入固定容积	引的密闭容器中。反应过程如下:	
	反应开始时 一~	正最大, で≋ 为_		
	Б	反应物浓度逐渐	→ v ₌ 逐渐;生	
			→ v = 从零开始逐	
	Ä			
	200	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
	达到平衡时—	$x = v_{\mathbb{Z}}$,反应混合	合物中各组分的浓度	
(2)平衡建立过	程中的两种图示			
	$c \uparrow$			

2. 化学平衡状态

当外界条件不变时,可逆反应进行到一定程度,反应物和生成物的_____不再随时间而发生变化,称之为化 学平衡状态。

___ 反应物

3. 化学平衡状态的特征

# —	化学平衡研究的对象是可逆反	曼
动—	化学平衡是一种动态平衡	
﴾—		
œ—	反应物和生成物的	保持不变
变)—	外界条件改变, 平衡也随之改变	Ę

预习自测

- 1. 判断下列反应,属于可逆反应的是 , 属于不可逆反应的是 。
- ①二氧化硫的催化氧化 ②氮气和氢气的化合 ③水的电解 ④可燃物的燃烧 ⑤氨气溶于水 ⑥氯气溶于水
- ⑦二氧化硫和水的反应 ⑧三氧化硫和水的反应 ⑨铁置换硫酸铜溶液中的铜
- 2. 判断正误,正确的打"√",错误的打"×"。
 - (1)可逆反应进行到一定程度时,反应就会停止 (
 - (2)可逆反应中反应物的转化率不能达到 100% (2)
 - (3)存在平衡的过程一定是化学反应的过程 (4)
 - (4)在化学平衡建立过程中, $v_{\rm E}$ 一定大于 $v_{\rm E}$ (
- (5)恒温恒容下进行的可逆反应: $2SO_2(g)+O_2(g)$ — $2SO_3(g)$,当 SO_3 的生成速率与 SO_2 的消耗速率相等时,反应达到平衡状态

导思:

一、利用极端假设法确定各物质的浓度范围

可利用极端假设法判断可逆反应中各物质的浓度范围,假设反应正向或逆向进行到底,求出各物质浓度的最大值和最小值,从而确定它们的浓度范围。

导练:

- 1. 在密闭容器中进行反应: $X_2(g)+3Y_2(g)$ \longrightarrow 2Z(g), X_2 、 Y_2 、Z 的起始浓度分别为 0.2 mol·L^{-1} 、 0.6 mol·L^{-1} 、 0.4 mol·L^{-1} ,当平衡时,下列数据肯定不正确的是
 - A. X_2 为 $0.4 \text{ mol} \cdot L^{-1}$, Y_2 为 $1.2 \text{ mol} \cdot L^{-1}$

B. Y₂为 1.0 mol·L⁻¹

C. X₂为 0.3 mol·L⁻¹, Z 为 0.2 mol·L⁻¹

- D. Z为 0.6 mol·L⁻¹
- 2. 在一密闭容器中进行反应 $2SO_2(g)+O_2(g)$ — $2SO_3(g)$,已知反应过程中某一时刻 SO_2 、 O_2 、 SO_3 的浓度分别为 0.6 mol·L^{-1} 、 0.3 mol·L^{-1} 、 0.6 mol·L^{-1} ,当反应至正、逆反应速率相等时,可能存在的状态是 ()
 - A. SO₂为 1.2 mol·L⁻¹、O₂为 0.6 mol·L⁻¹
- B. SO₂为 0.75 mol·L⁻¹

C. SO₂、SO₃均为 0.45 mol·L⁻¹

D. SO₃为 1.2 mol·L⁻¹

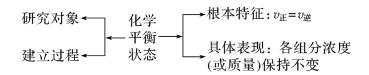
导思:

二、化学平衡状态的判断方法

德国化学家哈伯(F.Haber,1868~1934)从 1902 年开始研究由氮气和氢气直接合成氨。于 1908 年申请专利,即"循环法",在此基础上,他继续研究,于 1909 年改进了合成工艺,氨的产率达到 8%,这是工业普遍采用的直接合成法。一定温度下,恒容密闭容器中进行合成氨反应如下: N_2+3H_2 高温、高压 $2NH_3$ 。

问题探究------

- 1. 在一个 N≡N 断裂的同时,有6个 N—H 键形成时,该反应是否达到平衡状态?
- 2. 当容器中气体的密度不随时间的变化而变化时,该反应是否处于平衡状态?
- 3. 当容器中气体的压强不随时间的变化而变化时,该反应是否处于平衡状态?
- 4. 当容器内气体的平均相对分子质量不变时,该反应是否处于平衡状态?


【核心归纳】

化学平衡状态的判断标志

导练:

- 3. 在一定温度下,反应 $A_2(g)+B_2(g)$ \longrightarrow 2AB(g)达到平衡状态的标志是。
 - a.单位时间内生成 $n \mod A_2$ 的同时生成 $n \mod AB$
 - b.容器内的总压强不随时间变化
 - c.单位时间内生成 2n mol AB 的同时生成 n mol B2
 - d.单位时间内生成 n mol A_2 的同时生成 n mol B_2
 - e.容器内 A_2 、 B_2 、AB 的物质的量之比是 1:1:2 时的状态
 - f.容器中 $c(A_2)=c(B_2)=c(AB)$ 时的状态
- 4. 下列说法可以证明 $H_2(g)+I_2(g)$ \longrightarrow 2HI(g) 已达平衡状态的是 (填序号)。
 - ①单位时间内生成 $n \mod H_2$ 的同时, 生成 $n \mod H$ I
 - ②一个 H—H 键断裂的同时有两个 H—I 键断裂
 - ③百分含量 $w(HI)=w(I_2)$
 - ④反应速率 $v(H_2) = v(I_2) = \frac{1}{2}v(HI)$
 - $\textcircled{5}c(HI) : c(H_2) : c(I_2) = 2 : 1 : 1$
 - ⑥温度和体积一定时,某一生成物浓度不再变化
 - ⑦温度和体积一定时,容器内压强不再变化
 - ⑧温度和体积一定时,混合气体颜色不再变化
 - ⑨温度和压强一定时,混合气体的密度不再变化

导航:

导悟: