江苏省仪征中学 2024—2025 学年度第一学期高二化学导学案 专题 1 第二单元 化学能与电能的转化

第一节 原电池的工作原理

研制人:李艳 审核人:杨震

	.5/1	的人。于记 中极人。彻	仅
班级:	姓名:	学号:	授课日期:
本课在课程标准中的表述:	:		
认识化学能与电能相思	互转化的实际意义。	及其重要应用。了解原电池及	常见化学电源的工作原理。
【学习目标】			
1. 能认识化学能与电	比能相互转化的实际	示意义及其重要应用。	
2 能分析 解释原由	油和由解油的工作	F 原 押	

【学习过程】

导学: 知识梳理 (阅读教材 P15-17)

3. 能设计简单的原电池。

- 1. 原电池
 - (1)概念:将 转化为 的装置。
 - (2)构成条件

 - ②______溶液。
 - ③形成______回路。
 - ④能自发地发生氧化还原反应。
- 2. 铜锌原电池的工作原理
- (1)用温度计测量锌粉与 CuSO₄ 溶液反应的温度变化,说明该反应为_____反应,该反应在物质变化的同时,实现_____转化为___。
 - (2)铜锌原电池的工作原理

四川工 1上 2015王				
装置	电流计 量 盐桥			
电极	Zn	Cu		
反应现象	逐渐溶解	铜片上有物质析出		
电极名称	<u>负</u> 极	<u>正</u> 极		
得失电子	电子	电子		
电子流向	电子	电子		
反应类型	反应	反应		
电极反应式	$Zn-2e^- = Zn^{2^+}$	$Cu^{2^+}+2e^ =$ Cu		
电池反应	$Zn + Cu^{2^+} = Zn^{2^+} + Cu$			

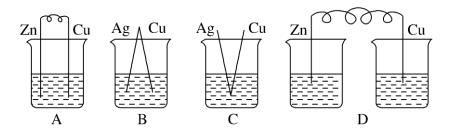
3. 盐桥

- (1)成分: 含有 KCl 饱和溶液的琼脂。
- (2)离子移动方向: Cl^{-} 移向 溶液(负极区), K^{+} 移向 溶液(正极区)。
- (3)作用:①使两个半电池形成通路,并保持两溶液的电中性。②避免电极与电解质溶液反应,有利于最大程度地将化学能转化为电能。

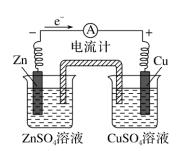
预习自测

判断正误,正确的打"√",错误的打"×"。

- (1)原电池中电子流出的一极是正极,发生氧化反应 ()
- (2)原电池中的盐桥是为了连通电路,也可用金属导线代替 ()
- (3)在原电池中阳离子移向正极,阴离子移向负极 ()
- (4)铜、锌与硫酸组成的原电池中、锌为负极、质量减少、铜为正极、质量不变 (


导思:

- 1. 原电池的工作原理(以锌铜原电池为例)
- 2. 原电池中盐桥的作用
- 3. 原电池中正、负极的判断方法


"电子不下水,离子不上岸"。

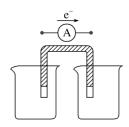
导练:

1. 下列烧杯中盛放的都是稀硫酸,在铜电极上能产生气泡的是

- 2. 如图为锌铜原电池装置,下列有关描述正确的是
 - A. 铜片和锌片可以互换位置
 - B. 若缺少电流计,则不能产生电流
 - C. 盐桥可用吸有 KNO₃ 溶液的滤纸条代替
 - D. Zn 发生氧化反应, Cu 发生还原反应

导思:

- 1. 加快氧化还原反应的速率
- 2. 比较金属活动性强弱
- 3. 设计原电池


导练:

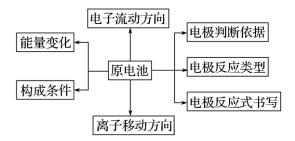
3. 某原电池总反应为 $Cu + 2Fe^{3^+} = Cu^{2^+} + 2Fe^{2^+}$,下列能实现该反应的原电池是

选项	A	В	C	D
电极材料	Cu, Zn	Cu、C	Fe, Zn	Cu, Ag
电解液	FeCl ₃ 溶液	Fe(NO ₃) ₂ 溶液	CuSO ₄ 溶液	Fe ₂ (SO ₄) ₃ 溶液

4. 设计两种类型的原电池,探究其能量转化效率。

限选材料: ZnSO₄(aq), FeSO₄(aq), CuSO₄(aq); 铜片,铁片,锌片和导线。

(1)完成原电池甲的装置示意图(如图所示),并作相应标注。


要求: 在同一烧杯中, 电极与溶液含相同的金属元素。

(2)铜片为电极之一, CuSO₄(aq)为电解质溶液,只在一个烧杯中组装原电池乙,工作一段时间后,可观察到 负极

(3)中、乙两种原电池中可更有效地将化字能转化为电能的走,	(3)甲、	乙两种原电池中可更有效地将化学能转化为电能的是	,其原因是_	
-------------------------------	-------	-------------------------	--------	--

_____~

导航:

导悟: