> 问题探索 投稿邮箱·sxik@vi

关注问题本质 提升评讲质量

·高三数学试卷评讲课如何开展

陈

浙江省宁波市鄞州高级中学 315194

[摘 要] 学生考试时常出现"一错再错"的现象,学生对错题的认识还停留在"知其然不知其所以然"的状态. 从而解题时即使知晓解题思路也不能顺利求解. 为此,在试卷评讲时要引导学生回归教材、回归通 法,从问题的本质出发,通过"多解""多变"实现解题思路的拓展和延伸,进而不断提升转化能力和 思维能力,促进解题效率的提升.

[关键词]回归教材;回归通法;解题效率

试卷评讲课是高三数学教学的重 要课型之一,是学生查缺补漏的主战场, 然从试卷反馈来看,试卷评讲的效率较 低,很多题目学生常"一错再错",究其 原因主要是受传统教学模式的影响,试 卷评讲依然延续着"师讲生听"的模式, 学生的主体性没有得到发挥,学生的学 习依然是被动的,学生只重视练而不重 视总结和反思,进而影响了学习能力的 提升. 那么试卷评讲该如何进行呢? 尤 其是对一些难度较大的应用题,应采用 什么评讲模式才会更加高效呢? 笔者以 一道高考模拟题为例,说一说对试卷评 讲的一些浅见,供参考.

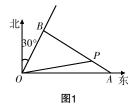
① 研究背景

下面的例1是高三模拟考试中的一 道综合应用题,笔者借助于本题求解中 暴露的问题,如基础知识不扎实、解题 思路单一、运算能力不足等问题,浅谈 试卷评讲的方向、试卷评讲的策略及意义.

例1 如图1所示,某商业中心0有两 条街道,一条位于正东方向,一条在北 偏东30°方向,某公园P位于商业中心O北 偏东 θ 角 $(0<\theta<\frac{\pi}{2},\tan\theta=3\sqrt{3})$,且公园

P与商业中心O的距离为 $\sqrt{21}$ km. 现过 公园P修一条直路,使其可以连通商业 中心O的两条街道,其交点分别为A,B.

- (1)若AB正好沿正北方向,试求O到 A.B两处的距离和:
- (2)若要使商业中心O到A.B两处的 距离最短,请确定A,B的最佳位置,



本题是一道高考模拟备考题,虽然 之前求解过类似的题目,然学生的解题 效果并不理想. 问题(1)中因为AB刚好 是正北方向,学生根据已知建立了平面 直角坐标系,并根据已知得到OA=OP· $\sin\theta = \frac{9}{2}$, OB=2OA, 于是得到O到A, B两处

的距离和为13.5 km. 该位置是一特殊位 置,其角度也是一特殊值,因此求解较 容易,绝大多数学生都可以准确求解,对

于问题(2),几乎所有学生都可以通过建 立平面直角坐标系,借助于直线AB的方 程来刻画O到A,B两处的距离和,解题思 路清晰,然在求解过程中却暴露了很多 问题,如未讨论直线AB的斜率,利用函 数却不考虑其定义域,求导运算也是漏 洞百出. 为此,对于这道应用题学生虽然 形成了正确的解题思路,然大多数学生 却未能正确求解. 那么对于这样的问 题,教师该如何评讲呢?显然,若"就题 论题"直接给出答案,则很难加深学生 的理解,那么学生日后解题时出现错解 的概率依然很大. 为此,评讲此类问题 时教师必须改变传统的"灌输式"和"一 刀切"评讲模式,要依据学生的学情,借 助于学生熟悉的问题带领学生回归问 题的本质,进而提升评讲品质,提高评 讲效率.

① 试卷评讲策略

1. 关注回归,化陌生为熟悉

(1)回归教材. 高考题目大多数源 于教材,在教材中往往可以发现高考题 目的影子. 因此,在试卷评讲时可以回归

作者简介:陈静(1970—),本科学历,中学高级教师,从事高中数学教学工作.

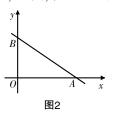
> 问题探索

投稿邮箱:sxik@vip.163.com

教材,从学生熟悉的内容出发,有效化解学生对题目的陌生感,增强解题信心;同时,通过回归可以引起学生对教材的重视,使学生更加关注对教材例习题的开发和拓展,这样既有利于拓展学生的思维能力也有助于学生跳出"题海".

(2)回归通法. 在解题教学中,部分学生常关注难题、新题,盲目地追求花里胡哨的解题技巧,进而使得基础题屡屡失分,得不偿失. 在数学学习中要多关注解题的通性通法,善于从问题的本质出发去思考和解决问题,这样不仅可以帮助学生跳出"题海",而且可以实现"会一题、会一类"的目的. 为此,在教学中教师可以带领学生从简单的、熟悉的问题出发,关注问题的基本规律,从普通意义去建构,使学生面临新题、难题时也能找准解题方向,顺利求解.

例2 如图2所示,在平面直角坐标系中,过点P(2,1)作直线l交x轴、y轴的正半轴于A,B两点,求OA+OB的最小值.



解法1: 由题意可知,直线l的斜率存在,设为 $k(k \neq 0)$,则l的方程为y-1=k(x-2). 令x=0,得 $y_B=1-2k$;令y=0,得 $x_A=2-\frac{1}{k}$. 由 $\begin{vmatrix} 1-2k>0 \\ 2-\frac{1}{k}>0 \end{vmatrix}$ 符k<0,则 $OA+OB=1-2k+2-\frac{1}{k}$ 之 $k=3+(-2k)+(-\frac{1}{k})$ 多 $3+2\sqrt{2}$,当且仅当 $-2k=-\frac{1}{k}$,即 $k=-\frac{\sqrt{2}}{2}$ 时取等号.

教师在评讲应用题前,选取了一个学生熟悉的、题设简单的求距离的问题,进而借助于简单题提升学生解题的信心.在求解过程中引导学生关注直线斜率存在的问题,善于对特殊情况进行分类讨论.本题根据直线/的斜率存在,故解题时可以结合图像借助于不等式组进行求解.

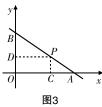
2. 多解拓展,优化解题策略

对于例2,教师引导学生进行多解拓展,其目的是发散思维,充分调动学生已有的经验,进而活学活用. 在教师的引

导下,对于例2学生又提出了以下两个不同的解决方法:

解法2: 设A(a,0)(a>0), 由题意可知, 直线l的斜率存在, 且斜率不为0, 故l: $\frac{y-1}{0-1} = \frac{x-2}{a-2}$, 令x=0, 得 $y_B = \frac{2}{a-2} + 1$. 由 $\frac{2}{a-2} + 1 > 0$ 得a>2, 则a>00A + a>00A + a>00

解法3:如图3所示,作 $PC \perp OA$, $PD \perp$ OB,垂足分别为C,D,设 $\angle BAO = \alpha (0 < \alpha < \frac{\pi}{2})$. 在 $Rt \triangle PAC$ 中, $AC = \frac{1}{\tan \alpha}$;在 $Rt \triangle PBD$ 中, $BD = 2\tan \alpha$. 则 $OA + OB = 2 + \frac{1}{\tan \alpha} + 1 + 2\tan \alpha = 3 + 2\tan \alpha + \frac{1}{\tan \alpha}$. 至此,问题转化后求得最小值为 $3 + 2\sqrt{2}$.



解法1为设方程法,解法2为设点法, 这两种方法是解析几何中常用的处理 方法. 在利用通法求解问题时要注意引 导学生关注问题转化的等价性,如特殊 值、定义域等. 解法3利用的是解三角形 的相关知识,在解决此类问题时应用此 方法也较常见. 以上三种解法都是教材 例习题中较常见的方法,将解法向学生 熟悉的解决模式进行转化,有利于解题 思路的形成,有助于解题效率的提升. 在数学学习中,很多学生对这些通性通 法表示不屑一顾, 过多地追求解题技巧, 久而久之,学生就会忘记解题的根本,学 生的解题能力难以得到提升. 为此,在 评讲应用题时,让问题回归,让解法回 归,引导学生关注基础、关注本质,进而 为后面的延伸和拓展奠基.

3. 变式拓展,活化思维

经过对例2的评讲,学生掌握了解决 此类问题的方法,那么其与例1又有什么 联系呢?如何引导学生进行知识的迁移 呢?基于此,教师在例2的基础上进行了 变式拓展,将图2进行旋转和倾斜后得到 了图4和图5.虽然变换后与原题不同, 然其本质并没有变化.依然可以借助于 例2的解题经验进行求解. "新题"给出后,学生迫不及待地想去验证,学生的探究欲被激发了,解题效率获得了大幅度提升.



学生通过类比,顺利地完成了这两道变式题,这时引导学生回归例1,将解题经验进一步迁移.通过前面由浅入深的逐层渗透,借助于"多解"和"变式"的不断激发,大多数学生可以自主地应用不同方法完成例1中问题(2)的求解.

解法1:设方程法. 学生之前在求解时几乎都应用了该方法,此方法是解决此类问题的通法,然因学生对通法的掌握不够细致,使得解题时漏洞百出. 为此,教师带领学生通过自查和互纠的方式完成错题订正,进而实现巩固基础、强化通法的目的.

解法2:设点法. 以O为原点,OA所在 的直线为x轴建立如图6所示的平面直角

坐标系,则
$$P\left(\frac{9}{2},\frac{\sqrt{3}}{2}\right)$$
.

设A(a,0)(a>0), 若 $a=\frac{9}{2}$, 由(1)得

OA + OB = 13.5 (km).

当
$$a \neq \frac{9}{2}$$
 时,直线 AB : $\frac{y-0}{\frac{\sqrt{3}}{2}-0}$

 $\frac{x-a}{9}$. 由题意知,直线 $OB: y=\sqrt{3} x$. 联 $\frac{9}{2}-a$

立直线AB与直线OB,解得 $x_B = \frac{a}{2a-8}$.

由
$$x_B = \frac{a}{2a-8} > 0$$
, 得 $a > 4$, 则 $OA + OB =$

$$a+2\times\frac{a}{2a-8}=(a-4)+\frac{4}{a-4}+5 \ge 9$$
, 当且仅

当
$$a-4=\frac{4}{a-4}$$
,即 $a=6$ 时取等号,此时 $OA=$

6 km, OB=3 km.

解法3:解三角形. 如图7所示,过点

投稿邮箱:sxik@vip.163.com

P作PM//OA交OB于点M,PN//OB交OA于点N,设 $\angle BAO$ = α .

$$BM = \frac{4\sin\alpha}{\sin(120^{\circ}-\alpha)}$$
, 且0°< α <120°, 则 $OA + OB = 4 + \frac{\sin(120^{\circ}-\alpha)}{\sin\alpha} + 1 + \frac{4\sin\alpha}{\sin(120^{\circ}-\alpha)} \ge$
9, 当且仅当 $\frac{\sin(120^{\circ}-\alpha)}{\sin\alpha} = \frac{4\sin\alpha}{\sin(120^{\circ}-\alpha)}$, 即 $\tan\alpha = \frac{\sqrt{3}}{3}$ 时取等号.

学生利用方程法求解后,教师又引导学生尝试利用另外两种方法求解,三种方法类比后让学生发现最优的解决方法.

在本题的评讲中,教师不是急于带领学生订正,而是借助于学生较熟悉的、

简单的问题先进行引导,让学生将解题的重心放置于问题本质的探究上,进而通过对通法的思考来寻找最优的解决方法.在此过程中让学生先回归熟悉,再利用变式回归陌生,通过模式的转化使学生的思维更加活跃,解法更加灵活,课堂更加生动.

总之,要想发挥试卷评讲的优势,就必须打破"就题论题"的教学模式,要回归基础,要善于捕捉问题的本质,从而让学生可以站在解题思想的高度去思考问题、解决问题,最终促进学生提升数学能力.

(上接第 43 页)

而这实际上就是一个关于指数函数的模型,因此这样一个概括的过程就是数学建模的过程.(数学运算主要存在于后续的数学习题解决过程中,数据分析存在于探究性质时运用图表以及画图时描点的过程,限于篇幅,这里也不再赘述)

通过以上设计和分析可以发现,运 用数学学科核心素养的组成要素来引导教学,客观上并不会对传统的教学思 路增加负担,无非是将与数学学科核心 素养相关的六个要素在教学过程中凸 显出来而已.

进一步,在核心素养的视角下反思 这样的教学设计与实施过程,可以发现 借助于考古素材来创设情境,能更好地 帮助学生认识到数学与生活之间的联 系,从而让数学文化能够扎根于生活当 中,这就可以丰富学生的人文底蕴,而 且可以显著地培养学生的科学精神(在 不少学生的认知当中,考古只是挖东 西,更有学生认为是"鬼吹灯"之类的玄 学,这显然是不合适的);在探究指数函 数的性质时, 充分赋予学生时间与空 间,尊重学生学习的自主性,当然就能 够让学生在此过程中学会学习......由 此来看,从更为宏观的核心素养视角观 照日常的高中数学教学,同样可以发现 前者对后者的引领价值与作用.

心核心素养下高中数学教学

展望

毫无疑问,核心素养的发展是学科教学的长远目标,数学学科核心素养的发展则是高中数学教学的直接目标.有了这样一个明确的目标认识,可以将高中数学教师对教学的理解、将学生对数学学科的理解,提高到一个超越应试的层次.这对于当前的高中数学教学来说是一个明显的突破,而对于核心素养的培育而言,则是一个有效的路径探究过程.

当然,对核心素养以及数学学科核 心素养的理解,又不能完全局限于数学 本身. 基于数学学科而超越数学学科, 基于课堂而超越课堂,重视知识却又不 止重视知识,这些都是核心素养下高中 数学教学的应有之义. 而要做到这一 点,原有的教学习惯与意识肯定是不够 的. 有研究者提出.作为高中数学教师. 在日常的教学过程中,要有一定的哲学 意识与思考. 这一点引起了笔者的兴 趣,很明显的一点是,强调数学教师要 有一定的哲学思考,那是因为包括核心 素养概念在内的所有的数学教学理念, 都有着哲学的影子. 进一步讲,一个数学 教师拥有的哲学思考应当包括这样几 个要点:一是用哲学思考判断数学教学 的内容结构与理念,二是用哲学思考引 导学生的数学思维发展,三是用哲学思考反思高中数学课堂上的教学关系[2]. 其实,数学与哲学原本关系就非常密切,"哲学"是"智慧"的意思,数学是一门智慧学科,数学教学的目的是为了让学生拥有更多的智慧,如果教师对数学没有一种智慧认识或者哲学认识,那发展学生的核心素养无异于缘木求鱼.由此审视核心素养对于高中数学教学的价值,就可以发现,无论是基于必备品格与关键能力的培养,还是从数学学科核心素养六个组成要素的角度来看,立足核心素养发展的高中数学教学,都确实能够发展学生的思维.

进而,在未来的高中数学教学中,应 当明确以核心素养驱动高中数学教学 的发展. 从实践来看,这样的指向并不会 影响学生应试能力的养成和发展,同时 又开辟了一条从传统教学通往核心素 养落地的阳光大道.

参考文献:

- [1] 王书坤,王鹏. 基于核心素养背景下的高中数学教学[J]. 天津教育, 2020(24):26-27.
- [2] 谢淇. 核心素养视角下的高中数 学教学的哲学思考[J]. 数学教学 通讯,2020(30):62-63.

60 > 2022年3月(下旬)