内容: 第二章第七节

授课时间: 9.14

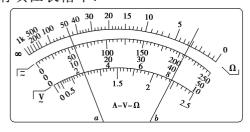
第7节 学生实验:练习使用多用电表 (课时1:多用表的构造、原理)

【课前导学】

一、	复习	回顾	
•	25-1	ーパス	

- 1. 电流表的改装 电路图_____ 量程 _____
- 2. 电压表的改装 电路图______ 量程 ______
- 3. 闭合电路欧姆定律

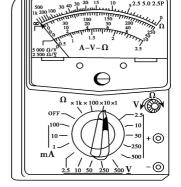
二、预习新课

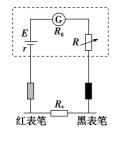

- 1. 看教材 P67-68 "认识多用电表" (要求: 初步认识多用电表,了解多欧姆表的原理)
- 2. 查阅资料了解"二极管"的特性

【课堂突破】

一、实验目的

二、多用电表的读数

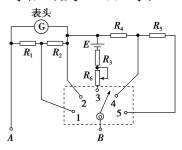

[例 1] 用多用电表进行了几次测量,指针分别处于 a 和 b 的位置,如图所示. 若 多用电表的选择开关处于下面表格中所指的挡位, a 和 b 的相应读数是多少? 请填在表格中.

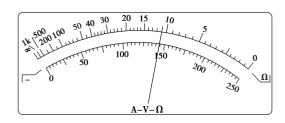


指针位置	选择开关所处挡位	读数
a a	直流电流 100 mA	mA
а	直流电压 2.5 V	V
b	电阻×100	Ω

三、多用电表的原理及使用

- 1. 表盘
- 2. 多用电表测电阻的原理——欧姆表的原理
- (1)构造:如图所示,欧姆表由_____组成.
- (2)工作原理: _____
- (3)刻度的标定: ①当 $I=I_g$ 时, 电流 I_g 处标为" _____".




 R_x = _____,在满偏

- ②当 *I*=0 时, *R_x*→ _____, 在 *I*=0 处标为" _____"
- ③当 $I = \frac{I_g}{2}$ 时, $R_x = ____$,此电阻是欧姆表的内阻,也叫中值电阻.

[**例** 2] 图(a)为某同学组装完成的简易多用电表的电路图.图中 E 是电池; R_1 、 R_2 、 R_3 、 R_4 和 R_5 是固定电阻, R_6 是可变电阻;表头⑥的满偏电流为 250 μ A,

内阻为 480Ω .虚线方框内为换挡开关,A端和 B端分别与两表笔相连.该多用电表有 5 个挡位,5 个挡位为:直流电压 1 V 挡和 5 V 挡,直流电流 1 mA 挡和 2.5 mA 挡,欧姆×100 Ω 挡.

(1)图(a)中的 A 端与______(填"红"或"黑")色表笔相连接. (2)关于 R_6 的使用,下列说法正确的是______(填正确答案标号). A. 在使用多用电表之前,调整 R_6 使电表指针指在表盘左端电流"0"位置

B. 使用欧姆挡时,先将两表笔短接,调整 R_6 使电表指针指在表盘右端电阻"0" 位置

(b)

C. 使用电流挡时,调整 R_6 使电表指针尽可能指在表盘右端电流最大位置 (3)根据题给条件可得 $R_1+R_2=$ Ω , $R_4=$ Ω . (4)某次测量时该多用电表指针位置如图(b)所示. 若此时 B 端是与"1"相连的,

则多用电表读数为______; 若此时 B 端是与"3"相连的,则读数为______; 若此时 B 端是与"5"相连的,则读数为 . (结果均保留 3 位有效数字)

【课后巩固】

优化探究同步导学案 P61 1, 2, 4, 5, 6, 7