江苏省仪征中学 2018-2019 学年第一学期高三数学

周三练习(6)文科

2018. 10. 17

范围:集合与逻辑、函数与导数、三角函数、平面向量、直线与圆、圆锥曲线、不等式、立体几何

- 一. 填空题:本大题共 14 小题,每小题 5 分,计 70 分.不需写出解答过程,请把答案写在答题纸的指定位置上.
- 1. 已知集合 $A = \{-2,0,1,3\}, B = \{-1,0,1,2\}, \ \emptyset \ A \cap B = \underline{\hspace{1cm}}$
- 2. 已知 $x, y \in R$,则" a = 1" 是直线 ax + y 1 = 0 与直线 x + ay + 1 = 0 平行的_____条件. (从"充分不必要""必要不充分""充分必要""既不充分也不必要"中选择一个)
- 3. 函数 $y = 3\sin(2x + \frac{\pi}{4})$ 图像两对称轴的距离为______.
- 4. 设复数 z 满足 $\frac{3+4i}{z} = 5i$,则 $|z| = _____$
- 5. 已知双曲线 $\frac{x^2}{a^2} y^2 = 1$ 左焦点与抛物线 $y^2 = -12x$ 的焦点重合 则双曲线的右准线方程为______.
- 6. 已知正四棱锥的底面边长为 2, 侧棱长为 6, 则正四棱锥的体积为______
- 7. 已知锐角 θ 满足 $\tan \theta = \sqrt{6} \cos \theta$, 则 $\frac{\sin \theta + \cos \theta}{\sin \theta \cos \theta} = \underline{\qquad}$.
- 8. 已知函数 $f(x) = x^2 kx + 4$ 对任意的 $x \in [1,3]$, 不等式 $f(x) \ge 0$ 恒成立 , 则实数 k 的最大值为____
- 9. 函数 $y = \cos x x \tan x$ 的定义域为 $\left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$, 其值域为______.
- 10. 已知圆 C 与圆 $x^2 + y^2 + 10x + 10y = 0$ 相切于原点 ,且过点 A(0,-6) ,则圆 C 的标准方程为_____.
- 11. 已知点 P(1,0) ,直线 l: y=x+t 与函数 $y=x^2$ 的图像相交于 A、B 两点 ,当 $\overrightarrow{PA} \cdot \overrightarrow{PB} P$ 最小时 , 直线 l 的方程为
- 12. 设椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的左,右焦点为 F_1 、 F_2 ,过 F_2 作 x 轴的垂线与 C 相交于 A、B 两
- 点, F_1B 与 y 轴相交于点 D,若 $AD \perp F_1B$,则椭圆 C 的离心率等于______ .
- 13. 已知 $a, b \in R, a + b = 4$, 则 $\frac{1}{a^2 + 1} + \frac{1}{b^2 + 1}$ 的最大值为 ______.
- 14. 已知 k 为常数,函数 $f(x) = \begin{cases} \frac{x+2}{x-1}, & x \leq 0 \\ |\ln x|, & x > 0 \end{cases}$,若关于 x 的方程 f(x) = kx + 2 有且只有 4 个不同的解,

则实数k的取值集合为_____

- 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
- 15. (本小题满分 14 分)

在 $\triangle ABC$ 中,角 A,B,C 所对的边分别为 a,b,c ,若 $b\cos A + a\cos B = -2c\cos C$.

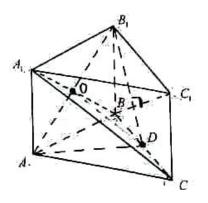
- (1) 求 C 的大小;
- (2) 若 b=2a, 且 $\triangle ABC$ 的面积为 $2\sqrt{3}$, 求 c.

16. (本小题满分 14 分)

如图 , 在直三棱柱 $ABC-A_1B_1C_1$ 中 , D 为 BC 中点 , $AB=AC,BC_1\perp B_1D$

求证:(1) A₁C // 平面 ADB₁

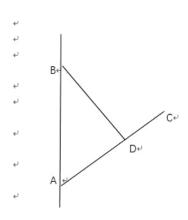
(2) 平面 $A_1BC_1 \perp ADB_1$



17. (本小题满分 14 分)

如图 ,准备在墙上钉一个支架 ,支架由两直杆 $AC \ni BD$ 焊接而成 ,焊接点 D 把杆 AC 分成 AD, CD 两段 ,其中两固定点 A , B 间距离为 1 米 , AB 与杆 AC 的夹角为 60° ,杆 AC 长为 1 米 ,若制作 AD 段的成本为 a 元/米 ,制作 CD 段的成本是 2a 元/米 ,制作杆 BD 成本是 4a 元/米. 设 $\angle ADB = \alpha$,则制作整个支架的总成本记为 S 元.

- (1) 求 S 关于 α 的函数表达式,并求出 α 的取值范围;
- (2)问 AD 段多长时, S 最小?

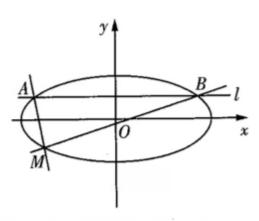


18. (本小题满分 16 分)

如图 , 在平面直角坐标系 xOy 中 , 已知椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的离心率为 $\frac{\sqrt{2}}{2}$, 左焦点

F(-2,0) , 直线 l:y=t 与椭圆交于 A,B 两点 , M 为椭圆上异于 A,B 的点.

- (1) 求椭圆 E 的方程;
- (2) 若 $M\left(-\sqrt{6},-1\right)$,以AB为直径的圆P过M点,求圆P的标准方程;
- (3)设直线 MA, MB 与 y 轴分别交于 C, D , 证明: $OC \cdot OD$ 为定值.



19. (本小题满分 16 分)

已知 b>0, 且 $b\neq 1$, 函数 $f(x)=e^x+b^x$, 其中 e 为自然对数的底数:

- (1) 如果函数 f(x) 为偶函数, 求实数 b 的值, 并求此时函数的最小值;
- (2) 对满足 b>0,且 $b\neq 1$ 的任意实数 b ,证明函数 y=f(x) 的图像经过唯一定点;
- (3) 如果关于 x 的方程 f(x) = 2 有且只有一个解,求实数 b 的取值范围.

- 20. 设函数 $f(x) = x \frac{1}{x} a \ln x (a \in R)$.
- (I)讨论函数 f(x)的单调性.
- (II)若 f(x) 有两个极值点 x_1 , x_2 ,记过点 $A(x_1,f(x_1))$, $B(x_2,f(x_2))$ 的直线斜率为 k .问:是否存在 ,使得 k=2-a ?若存在 ,求出 a 的值;若不存在 ,请说明理由 .

周三练习(6)理科参考答案

一、填空题

3.
$$\frac{\pi}{2}$$

2.
$$\hat{\pi}$$
 3. $\frac{\pi}{2}$ 4.1 5. $x = \frac{8}{3}$

6.
$$\frac{8}{3}$$

7.
$$3+2\sqrt{2}$$

9.
$$\left[\frac{\sqrt{2}}{2} - \frac{\pi}{4}, 1\right]$$

7.
$$3+2\sqrt{2}$$
 8. 4 9. $\left[\frac{\sqrt{2}}{2}-\frac{\pi}{4},1\right]$ 10. $(x+3)^2+(y+3)^2=18$

11.
$$y = x + \frac{1}{2}$$

12.
$$\frac{\sqrt{3}}{3}$$

13.
$$\frac{2+\sqrt{5}}{4}$$

11.
$$y = x + \frac{1}{2}$$
 12. $\frac{\sqrt{3}}{3}$ 13. $\frac{2 + \sqrt{5}}{4}$ 14. $\left\{\frac{1}{e^3}\right\} \cup (-e, -1)$

二、解答题

15. 解: (1) 由正弦定理
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
, 且 $b\cos A + a\cos B = -2c\cos C$ 得: ······

所以
$$\cos C = -\frac{1}{2}$$
,6 分 所以 $C = \frac{2}{3}\pi$7 分

所以
$$c^2 = a^2 + b^2 - 2ab\cos C = 2^2 + 4^2 - 2 \times 2 \times 4 \times (-\frac{1}{2}) = 28$$
 ,13 分

证明: (1) 设AC ∩ AB_i = E, 连接 DE.

因为 $ABC - A_iB_iC_i$ 为直三棱柱,

所以AABB为矩形,所以E为AB中点. ----1分 又因为 D 为 BC 中点,所以 DE 为 \triangle BAC 中位线, ----2 分 所以 $DE // A_1C \perp DE = \frac{1}{2}A_1C$. ----3分 因为 $A_iC \subset \overline{\text{m}}ADB_i$, $DE \subset \overline{\text{m}}ADB_i$, -----5分 -----7分 所以 AC // 平面 ADB. . (2) 因为AB = AC, D为BC中点, 所以 $AD \perp BC$. -----8分 又因为 $ABC - A_1B_1C_1$ 为直三棱柱,所以 $BB_1 \perp \text{面}ABC$. 因为 $AD \subset \text{面}ABC$,所以 $BB_1 \perp AD$. ----9分 因为 $BC \subset \overline{\mathrm{m}}BCC_1B_1$, $BB_1 \subset \overline{\mathrm{m}}BCC_1B_1$, $BC \cap BB_1 = B$, 所以 $AD \perp \overline{\mathrm{m}}BCC_1B_1$. ……10分 又 $BC_1 \subset \overline{\text{m}BCC_1B_1}$, 所以 $AD \perp BC_1$. ----11分 因为 $BC_1 \perp B_1D$, $AD \subset \overline{\mathrm{m}}ADB_1$, $B_1D \subset \overline{\mathrm{m}}ADB_1$, $AD \cap B_1D = D$, 所以 $BC_1 \perp \overline{\mathrm{m}}ADB_1$. ----13分 因为 $BC_1 \subset \overline{\mathrm{m}}A_1BC_1$, 所以平面 $A_1BC_1 \perp$ 平面 ADB_1 . ……14 分 17. 解: (1) 在 \triangle ABD 中,由正弦定理得 $\frac{1}{\sin \alpha} = \frac{BD}{\sin \frac{\pi}{3}} = \frac{AD}{\sin(\frac{2\pi}{3} - \alpha)}$, ----1分 所以 $BD = \frac{\sqrt{3}}{2\sin\alpha}$, $AD = \frac{\sqrt{3}\cos\alpha}{2\sin\alpha} + \frac{1}{2}$,

----3分

(2) 设A(s,t),则B(-s,t),且 $s^2 + 2t^2 = 8$. ①

所以圆
$$P$$
 的标准方程为 $x^2 + (y - \frac{1}{3})^2 = \frac{70}{9}$9 分

(3) 设 $M(x_0, y_0)$,则 l_{MA} 的方程为 $y-y_0 = \frac{t-y_0}{s-x_0}(x-x_0)$,若k不存在,显然不符合条件.

②若 $x_0 < 0$,g(x)在 $(x_0 + \infty)$ 上为增函数, $g(x_0) < g(0) = 0$,而 $g(\log_b 2) = e^{\log_b 2} + 2 - 2 = e^{\log_b 2} > 0$,所

以g(x)在($\log_b 2$, x_0)存在另外一个解,矛盾!

-----15 分

③当 $x_0 = \log_{\binom{e}{b}}(-\ln b) = 0$,则 $-\ln b = 1$,解得 $b = \frac{1}{e}$,此时方程为 $g(x) = e^x + \frac{1}{e^x} - 2 = 0$,

由(1)得,只有唯一解 $x_0 = 0$,满足条件

综上, 当b>1, 或 $b=\frac{1}{e}$ 时, 方程 f(x)=2 有且只有一个解.

----16分

20.**解:** 解: (I) f (x) 定义域为 (0, +∞), f' (x) =1+ $\frac{1}{x^2}$ - $\frac{a}{x}$ = $\frac{x^2 - ax + 1}{x^2}$,

 \Rightarrow g (x) =x² - ax+1, $\Delta = a^2 - 4$,

①当 - 2≤a≤2 时, Δ ≤0, f'(x) ≥0, 故 f(x) 在(0, +∞) 上单调递增,

②当 a< - 2 时, Δ >0,g(x)=0 的两根都小于零,在(0,+∞)上,f'(x)>0,故 f(x)在(0,+∞)上单调递增,

③当 a>2 时,
$$\Delta$$
>0, $g(x)=0$ 的两根为 $x_1=\frac{a-\sqrt{a^2-4}}{2}$, $x_2=\frac{a+\sqrt{a^2-4}}{2}$,

当 $0 < x < x_1$ 时,f'(x) > 0;当 $x_1 < x < x_2$ 时,f'(x) < 0;当 $x > x_2$ 时,f'(x) > 0;故 f(x)分别在 $(0, x_1)$, $(x_2, +\infty)$ 上单调递增,在 (x_1, x_2) 上单调递减.

(II) 由 (I) 知,
$$a > 2$$
. 因为 $f(x_1) - f(x_2) = (x_1 - x_2) + \frac{x_1 - x_2}{x_1 x_2} - a (lnx_1 - lnx_2),$

所以
$$k = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = 1 + \frac{1}{x_1 x_2} - a \frac{\ln x_1 - \ln x_2}{x_1 - x_2}$$

又由 (I) 知,
$$x_1x_2=1$$
. 于是 $k=2-a\frac{\ln x_1-\ln x_2}{x_1-x_2}$,

若存在 a, 使得 k=2 - a,则
$$\frac{\ln x_1 - \ln x_2}{x_1 - x_2}$$
=1,即 $\ln x_1 - \ln x_2 = x_1 - x_2$,亦即 $x_2 - \frac{1}{x_2} - 2\ln x_2 = 0$ (*)

再由 (I) 知, 函数h (t) =t - $\frac{1}{t}$ - 2Int在 (0, +∞) 上单调递增,

而 $x_2 > 1$,所以 $x_2 - \frac{1}{x_2} - 2 \text{In } x_2 > 1 - 1 - 2 \text{In } 1 = 0$,这与(*)式矛盾,故不存在 a,使得 k=2 - a.