微专题: 平面向量数量积的解题策略

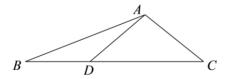
【学习目标】

熟练掌握平面向量应用的三个纬度:基底、坐标、几何.

体会数形结合思想、转化与化归思想在平面向量与其它知识点交汇处的应用.

【温故】

- 1. 已知|a|=2,|b|=3,a,b的夹角为120°,则|a+b|=_____.
- 2. 若O是 $\triangle ABC$ 所在平面内一点,且满足 $|\overrightarrow{AB}-\overrightarrow{AC}|=|\overrightarrow{AB}+\overrightarrow{AC}|$,则 $\triangle ABC$ 的形状为____.
- 3. 已知非零向量a,b满足|a|=|a+b|=1, a,b的夹角为120°,则|b|=_____.
- 4. 如图,在 $\triangle ABC$ 中, $\angle BAC = \frac{2\pi}{3}$,AB = 2,AC = 1,D 是边 BC 上一点,DC = 2BD,则 $\overrightarrow{AD} \cdot \overrightarrow{BC} =$



【例题】

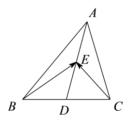
例 1. 设a,b,c 是单位向量,且a=b+c,则向量a,b的夹角等于______.

变式 1. 设a,b,c 是单位向量, $a \perp b$,则 $(a+b+2c)\cdot c$ 的最大值是______.

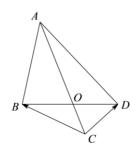
变式 2. 已知向量 $\mathbf{a} = (1,1)$, $\mathbf{b} = (-1,1)$,设向量 \mathbf{c} 满足 $(2\mathbf{a} - \mathbf{c}) \cdot (3\mathbf{b} - \mathbf{c}) = 0$,则 $|\mathbf{c}|$ 的最大值为______.

变式 3. 已知向量a,b满足|a|=1, $(2a+b)\cdot(a-2b)=0$,则|b|的最小值为_____.

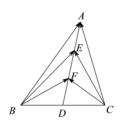
例 2. 如图, 在 $\triangle ABC$ 中, D, E分别是BC, AD的中点, $\overrightarrow{BA} \cdot \overrightarrow{CA} = 4$, $\overrightarrow{DC} \cdot \overrightarrow{DB} = -1$, 则 $\overrightarrow{BE} \cdot \overrightarrow{CE}$ 的值是______.



变式 1. 如图,在四边形 ABCD中, $\overrightarrow{AB} \cdot \overrightarrow{AD} = 5$, BD = 4, O 为 BD 的中点,且 $\overrightarrow{AO} = 3\overrightarrow{OC}$,则 $\overrightarrow{CB} \cdot \overrightarrow{CD} =$

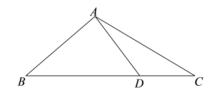


变式 2. 如图,在 $\triangle ABC$ 中,D是 BC的中点,E,F是 AD上两个三等分点, $\overrightarrow{BA} \cdot \overrightarrow{CA} = 4$, $\overrightarrow{BF} \cdot \overrightarrow{CF} = -1$,则 $\overrightarrow{BE} \cdot \overrightarrow{CE}$ 的值是______.



【反馈】

- 1. a,b 为单位向量,若 $|a-4b|=3\sqrt{2}$,则|a+4b|=_____.
- **2.** 在 $\triangle ABC$ 中, $\angle A = 60^{\circ}$,AB = 3,AC = 2.若 $\overrightarrow{BD} = \overrightarrow{DC}$, $\overrightarrow{AE} = \lambda \overrightarrow{AC} \overrightarrow{AB} \left(\lambda \in \mathbf{R} \right)$,且 $\overrightarrow{AD} \cdot \overrightarrow{AE} = 6$,则实数 λ 的值为______.
- 3. 如图,已知在 $\triangle ABC$ 中, $AD \perp AB$, $\overrightarrow{BC} = \sqrt{3}\overrightarrow{BD}$, $\left|\overrightarrow{AD}\right| = 1$,则 $\overrightarrow{AC} \cdot \overrightarrow{AD} =$ ______.



4. 已知圆 O 的直径 AB=2,C 是该圆上异于 A、B 的一点,P 是圆 O 所在平面上任一点,则 $(\overrightarrow{PA} + \overrightarrow{PB}) \cdot \overrightarrow{PC}$ 的最小值为______.

微专题: 平面向量数量积的解题策略

【学习目标】

熟练掌握平面向量应用的三个纬度:基底、坐标、几何,体会数形结合思想、转化与化归思想在平面向量与其它知识点交汇处的应用.

【温故】

1. 已知|a|=2,|b|=3,a,b的夹角为 120° ,则|a+b|=______.

解析 由题意可得: $\vec{a} \cdot \vec{b} = 2 \times 3 \times \cos 120^\circ = -3$,

则:
$$|\vec{a} + \vec{b}| = \sqrt{(\vec{a} + \vec{b})^2} = \sqrt{\vec{a}^2 + 2\vec{a} \cdot \vec{b} + \vec{b}^2} = \sqrt{4 - 2 \times 3 + 9} = \sqrt{7}$$
.

2. 若 O 是 $\triangle ABC$ 所在平面内一点,且满足 $|\overrightarrow{AB}-\overrightarrow{AC}|$ $|\overrightarrow{AB}-\overrightarrow{AC}|$,则 $\triangle ABC$ 的形状为

解析 $|\overrightarrow{AB} - \overrightarrow{AC}| = |\overrightarrow{AB} + \overrightarrow{AC}|$,由此可得以 $AB \setminus AC$ 为邻边的平行四边形为矩形 $\therefore \angle BAC = 90^\circ$,得 $\triangle ABC$ 的形状是直角三角形,故答案为直角三角形。

变题:若O是 ΔABC 所在平面内一点,且满足 $|\overrightarrow{OB}-\overrightarrow{OC}|=|\overrightarrow{OB}+\overrightarrow{OC}-2\overrightarrow{OA}|$,则 ΔABC 的形状为

解析 $\vec{c} \cdot \vec{c} \vec{B} = \vec{O} \vec{B} - \vec{O} \vec{C}$, $\vec{A} \vec{B} = \vec{O} \vec{B} - \vec{O} \vec{A}$, $\vec{c} \cdot |\vec{O} \vec{B} - \vec{O} \vec{C}| = |\vec{O} \vec{B} + \vec{O} \vec{C} - 2\vec{O} \vec{A}|$,

 $\mathbb{P}|\overrightarrow{CB}| = |\overrightarrow{AB} + \overrightarrow{AC}| : \overrightarrow{CB} = \overrightarrow{AB} - \overrightarrow{AC} , : |\overrightarrow{AB} - \overrightarrow{AC}| = |\overrightarrow{AB} + \overrightarrow{AC}|,$

由此可得以 $AB \setminus AC$ 为邻边的平行四边形为矩形 $\therefore \angle BAC = 90^\circ$,

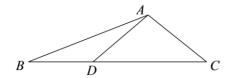
得Δ ABC的形状是直角三角形, 故答案为直角三角形.

3. 已知非零向量a, b满足|a| = |a + b| = 1, a, b的夹角为120°, 则 $|b| = _____$.

解析 1.

4. 如图,在 $\triangle ABC$ 中, $\angle BAC = \frac{2\pi}{3}$,AB = 2,AC = 1,D 是边BC 上一点,DC = 2BD,

则
$$\overrightarrow{AD} \cdot \overrightarrow{BC} = \underline{\hspace{1cm}}$$
.



解析 \overrightarrow{AD} , \overrightarrow{BC} 模长未知 ($|\overrightarrow{BC}|$ 尚可求出), 夹角未知, 所以很难直接求出数量积.

考虑是否有合适基底, $\angle BAC = 120^{\circ}, AB = 2, AC = 1$,

可计算出 $\overrightarrow{AB} \cdot \overrightarrow{AC} = |\overrightarrow{AB}| \cdot |\overrightarrow{AC}| \cos 120^\circ = -1$, 进而对于 $\overrightarrow{AB}, \overrightarrow{AC}$,

模长均已知,数量积已求,条件齐备,适合作为基底.

用
$$\overrightarrow{AB}$$
, \overrightarrow{AC} 表示 $\overrightarrow{AD} \cdot \overrightarrow{BC}$: $\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$, $\overrightarrow{AD} = \frac{1}{3}\overrightarrow{AC} + \frac{2}{3}\overrightarrow{AB}$,

$$\therefore \overrightarrow{AD} \cdot \overrightarrow{BC} = \left(\overrightarrow{AC} - \overrightarrow{AB}\right) \cdot \left(\frac{1}{3}\overrightarrow{AC} + \frac{2}{3}\overrightarrow{AB}\right) = \frac{1}{3}\overrightarrow{AC}^2 + \frac{1}{3}\overrightarrow{AB} \cdot \overrightarrow{AC} - \frac{2}{3}\overrightarrow{AB}^2 = -\frac{8}{3}.$$

【例题】

例 1. 设a,b,c 是单位向量,且a=b+c,则向量a,b的夹角等于_______.

解析 $\frac{\pi}{3}$.

变式 1. 设a,b,c 是单位向量, $a\perp b$,则 $(a+b+2c)\cdot c$ 的最大值是_______.

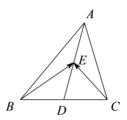
解析 $2+\sqrt{2}$.

变式 2. 已知向量 $\mathbf{a} = (1,1)$, $\mathbf{b} = (-1,1)$,设向量 \mathbf{c} 满足 $(2\mathbf{a} - \mathbf{c}) \cdot (3\mathbf{b} - \mathbf{c}) = 0$,则 $|\mathbf{c}|$ 的最大值为______.

解析 $\sqrt{26}$.

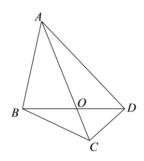
解析 $\frac{1}{2}$

例 2. 如图,在 $\triangle ABC$ 中,D,E分别是BC,AD的中点, $\overrightarrow{BA} \cdot \overrightarrow{CA} = 4$, $\overrightarrow{DC} \cdot \overrightarrow{DB} = -1$,则 $\overrightarrow{BE} \cdot \overrightarrow{CE}$ 的值是



解析 $\frac{1}{4}$

变式 1. 如图,在四边形 ABCD中, $\overrightarrow{AB} \cdot \overrightarrow{AD} = 5$,BD = 4,O为 BD 的中点,且 $\overrightarrow{AO} = 3\overrightarrow{OC}$,则 $\overrightarrow{CB} \cdot \overrightarrow{CD} =$ ______.

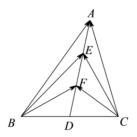


解析 在 $\triangle ABD$ 中,由余弦定理可得: $\overline{AB}^2 + \overline{AD}^2 = \overline{BD}^2 + 2\overline{AB} \cdot \overline{BD} = 16 + 10 = 26$,由题意可得: $\overline{CB} = \overline{AB} - \overline{AC} = \overline{AB} - \frac{4}{3}\overline{AO} = \overline{AB} - \frac{4}{3} \times \frac{1}{2} \left(\overline{AB} + \overline{AD} \right) = \frac{1}{3}\overline{AB} - \frac{2}{3}\overline{AD}$, $\overline{CD} = \overline{AD} - \overline{AC} = \overline{AD} - \frac{4}{3}\overline{AO} = \overline{AD} - \frac{4}{3} \times \frac{1}{2} \left(\overline{AB} + \overline{AD} \right) = \frac{1}{3}\overline{AD} - \frac{2}{3}\overline{AB}$,

*** $\overline{CD} = \overline{CD} = \left(\frac{1}{AB} - \frac{2}{AB} \right) \left(\frac{1}{AB} - \frac{2}{AB} \right) \left(\frac{1}{AB} - \frac{2}{AB} \right) = \frac{2}{AB} \left(\overline{AB}^2 + \overline{AD}^2 \right) + \frac{5}{AB} \overline{AD} = 2$ *** *** $\overline{CD} = \overline{CD} = \overline{CD}$

故 $\overline{CB} \cdot \overline{CD} = \left(\frac{1}{3}\overline{AB} - \frac{2}{3}\overline{AD}\right) \left(\frac{1}{3}\overline{AD} - \frac{2}{3}\overline{AB}\right) = -\frac{2}{9}\left(\overline{AB}^2 + \overline{AD}^2\right) + \frac{5}{9}\overline{AB} \cdot \overline{AD} = -3$,故答案为 -3.

变式 2. 如图,在 $\triangle ABC$ 中,D是BC的中点,E,F是AD上两个三等分点, $\overrightarrow{BA} \cdot \overrightarrow{CA} = 4$, $\overrightarrow{BF} \cdot \overrightarrow{CF} = -1$,则 $\overrightarrow{BE} \cdot \overrightarrow{CE}$ 的值是_______.



解析 解法一(基底法): 令 $\overrightarrow{DC} = a$, $\overrightarrow{DF} = b$, 则 $\overrightarrow{DB} = -a$, $\overrightarrow{DE} = 2b$, $\overrightarrow{DA} = 3b$,

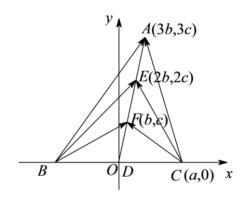
则
$$\overrightarrow{BA} = a + 3b$$
, $\overrightarrow{CA} = -a + 3b$, $\overrightarrow{BE} = a + 2b$,

$$\overrightarrow{CE} = -a + 2b$$
, $\overrightarrow{BF} = a + b$, $\overrightarrow{CF} = -a + b$,

故
$$\overrightarrow{BA} \cdot \overrightarrow{CA} = -a^2 + 9b^2 = 4$$
, $\overrightarrow{BF} \cdot \overrightarrow{CF} = -a^2 + b^2 = -1$, 因此 $a^2 = \frac{13}{8}$, $b^2 = \frac{5}{8}$.

故
$$\overrightarrow{BE} \cdot \overrightarrow{CE} = -a^2 + 4b^2 = \frac{4 \times 5}{8} - \frac{13}{8} = \frac{7}{8}$$
. 故填 $\frac{7}{8}$.

解法二 (建系法): 可以考虑以 D 为原点,BC 所在直线为 x 轴,BC 的中垂线为 y 轴建立如图所示的平面直角坐标系,不妨设 C(a,0),F(b,c),则 B(-a,0),E(2b,2c),A(3b,3c).



则
$$\overrightarrow{BA} = (3b+a,3c)$$
, $\overrightarrow{CA} = (3b-a,3c)$, $\overrightarrow{BE} = (2b+a,2c)$,

$$\overrightarrow{CE} = (2b-a,2c), \quad \overrightarrow{BF} = (b+a,c), \quad \overrightarrow{CF} = (b-a,c),$$

由题意
$$\overrightarrow{BA} \cdot \overrightarrow{CA} = 9b^2 + 9c^2 - a^2 = 4$$
, $\overrightarrow{BF} \cdot \overrightarrow{CF} = b^2 + c^2 - a^2 = -1$,

因此
$$a^2 = \frac{13}{8}$$
 , $b^2 + c^2 = \frac{5}{8}$, 故 $\overrightarrow{BE} \cdot \overrightarrow{CE} = 4b^2 + 4c^2 - a^2 = \frac{4 \times 5}{8} - \frac{13}{8} = \frac{7}{8}$. 故填 $\frac{7}{8}$.

【反馈】

1. a,b 为单位向量,若 $|a-4b|=3\sqrt{2}$,则|a+4b|=______.

解析 由题 $|\vec{a}-4\vec{b}|=3\sqrt{2}$,两边平方 $(\vec{a}-4\vec{b})^2=18$,得 $\vec{a}^2-8\vec{a}\cdot\vec{b}+16\vec{b}^2=18$,则 $\vec{a}\cdot\vec{b}=-\frac{1}{8}$, $|\vec{a}+4\vec{b}|^2=(\vec{a}+4\vec{b})^2=\vec{a}^2+8\vec{a}\cdot\vec{b}+16\vec{b}^2=1+8\times(-\frac{1}{8})+16=16$.则 $|\vec{a}+4\vec{b}|=4$.

2. 在 $\triangle ABC$ 中, $\angle A=60^{\circ}$, AB=3, AC=2. 若 $\overrightarrow{BD}=2\overrightarrow{DC}$, $\overrightarrow{AE}=\lambda\overrightarrow{AC}-\overrightarrow{AB}\left(\lambda\in\mathbf{R}\right)$,

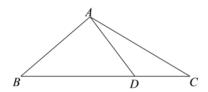
且 $\overrightarrow{AD} \cdot \overrightarrow{AE} = 6$,则实数 λ 的值为_____.

$$\text{III} \xrightarrow{AD} \xrightarrow{AE} = \left(\frac{1}{3} \xrightarrow{AB} + \frac{2}{3} \xrightarrow{AC}\right) \left(\lambda \xrightarrow{AC} \xrightarrow{AB}\right) = \frac{1}{3} \lambda \xrightarrow{AE} \xrightarrow{AC} \frac{1}{3} \xrightarrow{AB}^2 + \frac{2}{3} \lambda \xrightarrow{AC}^2 - \frac{2}{3} \xrightarrow{AC} \xrightarrow{AB}$$

 $\therefore AB = 3$,AC = 2 $\therefore \xrightarrow{AB} \xrightarrow{AC} = 3 \times 2 \times \frac{1}{2} = 3$ 原式 $= \lambda - 3 + \frac{8}{3}\lambda - 2 = 6$, $\therefore \lambda = 3$ 故实数 λ 的值为 3.

3. 如图,已知在 $\triangle ABC$ 中, $AD \perp AB$, $\overrightarrow{BC} = \sqrt{3}\overrightarrow{BD}$, $|\overrightarrow{AD}| = 1$,则

$$\overrightarrow{AC} \cdot \overrightarrow{AD} = \underline{\hspace{1cm}}$$



解析 观察条件, \overrightarrow{AC} , \overrightarrow{AD} 很难直接利用公式求解. 考虑选择两个向量表示 \overrightarrow{AC} , \overrightarrow{AD} , 条件中 $\overrightarrow{AD} \perp \overrightarrow{AB} \Rightarrow \overrightarrow{AD} \cdot \overrightarrow{AB} = 0$ (数量积有了), $|\overrightarrow{AD}| = 1$ (模长有了),

所以考虑用 \overline{AB} , \overline{AD} 作为基底.

下一步只需将
$$\overrightarrow{AC}$$
表示出来, $\overrightarrow{BC} = \sqrt{3}\overrightarrow{BD} \Rightarrow BD: CD = 1: (\sqrt{3}-1)$

(底边比值——联想到"爪"字型图)
$$\overrightarrow{AD} = \frac{\sqrt{3}-1}{\sqrt{3}}\overrightarrow{AB} + \frac{1}{\sqrt{3}}\overrightarrow{AC}$$
,

解得: $\overrightarrow{AC} = \sqrt{3}\overrightarrow{AD} - (\sqrt{3} - 1)\overrightarrow{AB}$,

$$\text{FT VI } \overrightarrow{AC} \cdot \overrightarrow{AD} = \left(\sqrt{3} \overrightarrow{AD} - \left(\sqrt{3} - 1 \right) \overrightarrow{AB} \right) \cdot \overrightarrow{AD} = \sqrt{3} \overrightarrow{AD}^2 = \sqrt{3}$$

4.已知圆 O 的直径 AB=2,C 是该圆上异于 A、B 的一点,P 是圆 O 所在平面上任一点,则 $(\overrightarrow{PA} + \overrightarrow{PB}) \cdot \overrightarrow{PC}$ 的最小值为______.

【答案】
$$-\frac{1}{2}$$

【解析】

试题分析:
$$(\overrightarrow{PA} + \overrightarrow{PB}) \cdot \overrightarrow{PC} = 2\overrightarrow{PO} \cdot \overrightarrow{PC} = 2\overrightarrow{PO} \cdot (\overrightarrow{PO} + \overrightarrow{OC}) = 2\overrightarrow{PO}^2 + 2\overrightarrow{PO} \cdot \overrightarrow{OC}$$
 设 $<\overrightarrow{PO}, \overrightarrow{OC}> = \theta$,则

$$(\overrightarrow{PA} + \overrightarrow{PB}) \cdot \overrightarrow{PC} = 2 |\overrightarrow{PO}|^2 + 2 |\overrightarrow{PO}| \cos \theta = 2(|\overrightarrow{PO}| + \frac{\cos \theta}{2})^2 - \frac{\cos^2 \theta}{2} \ge -\frac{\cos^2 \theta}{2} \ge -\frac{1}{2}.$$