江苏省仪征中学 2019 届高三下学期数学周末限时训练 1

数学I

参考公式: 样本数据 x_1, x_2, \dots, x_n 的方差 $s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$,其中 $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$.

—.	填空题: 本大题共 14 小题, 每小题 5 分, 共 70 分. 请把答案填写在答题卡	相应位置.
1.	已知集合 $A = \{0,1,2,3\}$, $B = \{x \mid 0 < x \le 2\}$,则 $A \cap B = $	
2.	已知复数 $z = (2-i)^2$ (i 是虚数单位),则 z 的模为	
3.	已知一组样本数据 5, 4, x, 3, 6 的平均数为 5,则该组数据的方差为	•
	运行如图所示的伪代码,则输出的结果 5 为	<i>I</i> ←1
5.	若从 2,3,6 三个数中任取一个数记为 a ,再从剩余的两个数中任取一个	While $I < 8$
	数记为 b ,则" $\frac{a}{b}$ 是整数"的概率为	$I \leftarrow I + 2$
_	若抛物线 $y^2 = 2px(p > 0)$ 的焦点与双曲线 $x^2 - \frac{y^2}{3} = 1$ 的右焦点重合,则实	$S \leftarrow 2I + 3$
υ.	有拠物级 $y = 2px(p > 0)$ 的焦点与从曲线 $x = \frac{1}{3}$ 目的有焦点重信,则头 $\frac{1}{3}$	End While
	数 <i>p</i> 的值为	Print S

- 8. 已知正四棱锥的底面边长为 $2\sqrt{3}$,高为1,则该正四棱锥的侧面积为_____.
- 9. 已知 $a,b \in \mathbb{R}$,函数 f(x) = (x-2)(ax+b) 为偶函数,且在 $(0,+\infty)$ 上是减函数,则关于 x 的不等式 f(2-x) > 0 的解集为______.
- **10.** 已知 a > 0 , b > 0 , 且 $a + 3b = \frac{1}{b} \frac{1}{a}$, 则 b 的最大值为______.
- 12. 在 $\triangle ABC$ 中, AB=2 , AC=3 , $\angle BAC=60^{\circ}$, P 为 $\triangle ABC$ 所在平面内一点,满足 $\overrightarrow{CP}=\frac{3}{2}\overrightarrow{PB}+2\overrightarrow{PA}$,则 $\overrightarrow{CP}\cdot\overrightarrow{AB}$ 的值为______.
- **13.** 在平面直角坐标系 **xOy** 中,已知圆 **C**₁: $x^2 + y^2 + 2mx (4m+6)y 4 = 0 (m \in \mathbf{R})$ 与以 $C_2(-2,3)$ 为圆心的圆相交于 $A(x_1, y_1)$, $B(x_2, y_2)$ 两点,且满足 $x_1^2 x_2^2 = y_2^2 y_1^2$,则实数 **m** 的值为_______.
- **14.** 已知 x > 0 , y > 0 , z > 0 , 且 $x + \sqrt{3}y + z = 6$, 则 $x^3 + y^2 + 3z$ 的最小值为______.

- 二. 解答题: 本大题共 6 小题, 共计 90 分. 请在答题卡指定区域内作答, 解答时应写出文字说明、证明过程或计算步骤.
- 15. (本小题满分 14 分)

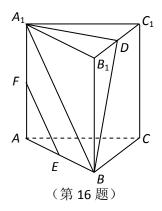
在
$$\triangle ABC$$
中, $\sin A = \frac{2}{3}$, $\mathbf{A} \in (\frac{\pi}{2}, \pi)$.

- (1) 求 sin 2A 的值;
- (2) 若 $\sin B = \frac{1}{3}$, 求 $\cos C$ 的值.

16. (本小题满分 14 分)

如图,在直三棱柱 $ABC - A_lB_lC_l$ 中, $D \cdot E \cdot F$ 分别是 $B_lC_l \cdot AB \cdot AA_l$ 的中点.

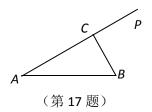
- (1) 求证: EF // 平面 A₁BD;
- (2) 若 $A_1B_1=A_1C_1$, 求证: 平面 $A_1BD \perp$ 平面 BB_1C_1C .



17. (本小题满分 14 分)

如图,某公园内有两条道路 AB,AP,现计划在 AP 上选择一点 C ,新建道路 BC ,并把 $\triangle ABC$ 所在的区域改造成绿化区域.已知 $\angle BAC = \frac{\pi}{6}$, AB = 2 km .

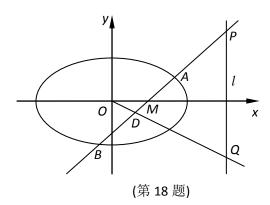
- (1) 若绿化区域 $\triangle ABC$ 的面积为 1 km^2 , 求道路 BC 的长度;
- (2) 若绿化区域 $\triangle ABC$ 改造成本为 10 万元/ km²,新建道路 BC 成本为 10 万元/ km. 设 $\angle ABC = \theta$ ($0 < \theta \leq \frac{2\pi}{3}$),当 θ 为何值时,该计划所需总费用最小?



18. (本小题满分 16 分)

如图,在平面直角坐标系 xOy 中,已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的离心率为 $\frac{\sqrt{2}}{2}$,且右焦点到右准线 l 的距离为1.过 x 轴上一点 M(m,0) (m 为常数,且 $m \in (0,2)$)的直线与椭圆 C 交于 A,B 两点,与 l 交于点 P ,D 是弦 AB 的中点,直线 OD 与 l 交于点 Q .

- (1) 求椭圆C的标准方程;
- (2) 试判断以PQ为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.



19. (本小题满分 16 分)

已知函数 $f(x) = (x-a) \ln x \ (a \in \mathbf{R})$.

- (1) 若 a = 1, 求 f(x) 在 x = 1 处的切线方程;
- (2) 若对于任意的正数 x, $f(x) \ge 0$ 恒成立, 求实数 a 的值;
- (3) 若函数 f(x) 存在两个极值点,求实数 a 的取值范围.

20. (本小题满分 16 分)

已知数列 $\{a_n\}$ 满足对任意的 $n \in \mathbb{N}^*$,都有 $a_n(q^n a_n - 1) + 2q^n a_n a_{n+1} = a_{n+1}(1 - q^n a_{n+1})$,且 $a_{n+1} + a_n \neq 0$,其中 $a_1 = 2$, $q \neq 0$.记 $T_n = a_1 + qa_2 + q^2 a_3 + \dots + q^{n-1}a_n$.

- (1) 若q=1, 求 T_{2019} 的值;
- (2) 设数列 $\{b_n\}$ 满足 $b_n = (1+q)T_n q^n a_n$.
 - ① 求数列 $\{b_n\}$ 的通项公式;
 - ② 若数列 $\{c_n\}$ 满足 $c_1 = 1$,且当 $n \ge 2$ 时, $c_n = 2^{b_{n-1}} 1$,是否存在正整数k,t,使 c_1 , $c_k c_1$, $c_k c_k$ 成等比数列?若存在,求出所有k,t的值,若不存在,说明理由.

数学Ⅱ(附加题)

21. A. [选修 4-2: 矩阵与变换] (本小题满分 10 分)

已知矩阵
$$A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 0 \\ 1 & 8 \end{bmatrix}$, 求 $A^{-1}B$.

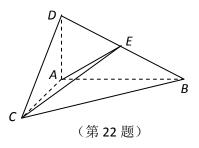
B. [选修 4-4: 坐标系与参数方程](本小题满分 10 分)

在极坐标系中,曲线 $C: \rho = 2\cos\theta$. 以极点为坐标原点,极轴为 x 轴非负半轴建立平面直角坐标系 xOy,设过点 A(3,0) 的直线 l 与曲线 C 有且只有一个公共点,求直线 l 的斜率.

22. (本小题满分 10 分)

如图, 在三棱锥 D-ABC中, DA 上平面 ABC, $\angle CAB = 90^{\circ}$,且 AC = AD = 1, AB = 2, E 为 BD 的中点.

- (1) 求异面直线 AE 与 BC 所成角的余弦值;
- (2) 求二面角A-CE-B的余弦值.



23. (本小题满分 10 分)

已知数列 $\{a_n\}$ 满足 $a_1 = \frac{1}{3}$, $a_{n+1} = -2a_n^2 + 2a_n$, $n \in \mathbb{N}^*$.

(1) 用数学归纳法证明: $a_n \in (0, \frac{1}{2})$;

(2) 令
$$b_n = \frac{1}{2} - a_n$$
, 证明: $\sum_{i=1}^n \frac{1}{b_i} \geqslant 3^{n+1} - 3$.

江苏省仪征中学 2019 届高三下学期数学周末限时训练 1 参考答案

一. 填空题:

1.
$$\{1,2\}$$
 2. 5 3. 2 4. 21 5. $\frac{1}{3}$ 6. 4 7. $\frac{15}{2}$ 8. $8\sqrt{3}$

5.
$$\frac{1}{3}$$

$$\frac{15}{2}$$
 8. 8

10.
$$\frac{1}{3}$$

9.
$$(0,4)$$
 10. $\frac{1}{3}$ 11. $\frac{\sqrt{3}\pi}{2}$ 12. -1 13. -6 14. $\frac{37}{4}$

4.
$$\frac{37}{1}$$

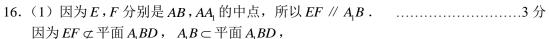
二.解答题:

所以
$$\sin 2A = 2\sin A\cos A = -\frac{4\sqrt{5}}{9}$$
. 6 分

(2) 由
$$A \in (\frac{\pi}{2}, \pi)$$
,则 B 为锐角,

又
$$\sin B = \frac{1}{3}$$
,所以 $\cos B = \sqrt{1 - (\frac{1}{3})^2} = \frac{2\sqrt{2}}{3}$, 8分

$$= -\left(-\frac{\sqrt{5}}{3} \times \frac{2\sqrt{2}}{3} - \frac{2}{3} \times \frac{1}{3}\right) = \frac{2\sqrt{10} + 2}{9}.$$
 14 \(\frac{1}{2}\)



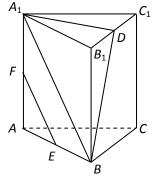
(2) 在直三棱柱
$$ABC - A_1B_1C_1$$
 中, BB_1 上平面 $A_1B_1C_1$,

因为
$$A_1D$$
 \subset 平面 $A_1B_1C_1$,所以 $BB_1 \perp A_1D$8分

因为
$$A_1B_1 = A_1C_1$$
, 且 D 是 B_1C_1 的中点,

因为
$$BB_1 \cap B_1C_1 = B_1$$
, B_1C_1 , $BB_1 \subset$ 平面 BB_1C_1C ,

因为 A_iD \subset 平面 A_iBD ,



17. (1) 因为在
$$\triangle ABC$$
 中, 已知 $\angle BAC = \frac{\pi}{6}$, $AB = 2$ km,

所以由
$$\triangle ABC$$
 的面积 $S = \frac{1}{2} \times AB \times AC \times \sin \frac{\pi}{6} = 1$,

在
$$\triangle ABC$$
 中,由余弦定理得: $BC^2 = AB^2 + AC^2 - 2 \times AB \times AC \times \cos \frac{\pi}{6}$

(2)
$$\boxplus \angle ABC = \theta$$
, $\mathbb{N} \angle ACB = \pi - \left(\theta + \frac{\pi}{6}\right)$, $0 < \theta \leq \frac{2\pi}{3}$.

在
$$\triangle ABC$$
 中, $\angle BAC = \frac{\pi}{6}$, $AB = 2$ km ,由正弦定理得 $\frac{AC}{\sin B} = \frac{BC}{\sin A} = \frac{AB}{\sin C}$,

```
因为该式对\forall k \neq 0恒成立,令y=0,得x=2\pm\sqrt{2-m},
   所以以PQ为直径的圆经过定点(2\pm\sqrt{2-m},0)......16分
19. (1) 因为f(x) = (x-a) \ln x \ (a \in \mathbb{R}),所以当a = 1时,f(x) = (x-1) \ln x,
   当x=1时, f(1)=0, f'(1)=0,
   (2) 因为对于任意的正数 x, f(x) \ge 0 恒成立,
   当 ln x ≤ 0 时,即 x < 1 时,x ≤ a 恒成立,所以 a ≥ 1,
   (3) 因为函数 f(x) 存在两个极值点,
   所以 f'(x) = \ln x - \frac{a}{x} + 1 存在两个不相等的零点.
   设 g(x) = \ln x - \frac{a}{r} + 1,则 g'(x) = \frac{1}{r} + \frac{a}{r^2} = \frac{x+a}{r^2}.
   当a < 0时,因为x \in (0, -a)时,g'(x) < 0,g(x)单调递减,
          x \in (-a, +\infty) 时, g'(x) > 0, g(x) 单调递增,
   因为g(x)存在两个不相等的零点,所以\ln(-a)+2<0,解得-e^{-2}< a<0.
   因为-e^{-2} < a < 0,所以-\frac{1}{a} > e^{2} > -a.
   因为 g(-\frac{1}{a}) = \ln(-\frac{1}{a}) + a^2 + 1 > 0,所以在 (-a, +\infty) 上存在一个零点. ..........13 分
   因为-e^{-2} < a < 0,所以a^2 < -a. 又因为g(a^2) = \ln a^2 - \frac{1}{a} + 1 = 2\ln(-a) + \frac{1}{-a} + 1,
   设t = -a,则y = 2 \ln t + \frac{1}{t} + 1(0 < t < \frac{1}{a^2}),因为y' = \frac{2t-1}{t^2} < 0,
   所以 y = 2\ln t + \frac{1}{t} + 1(0 < t < \frac{1}{a^2}) 单调递减,所以 y > 2\ln \frac{1}{a^2} + e^2 + 1 = e^2 - 3 > 0,
   所以 g(a^2) = \ln a^2 - \frac{1}{a} + 1 > 0, 所以在 (0, -a) 上存在一个零点.
   得(a_{n+1}+a_n)^2=a_{n+1}+a_n,
   \sum a_{n+1} + a_n \neq 0,
   \nabla a_1 = 2,
   所以T_{2019} = a_1 + (a_2 + a_3) + (a_4 + a_5) + \cdots + (a_{2018} + a_{2019}) = 1011. 4分
   (2) \pm a_n (q^n a_n - 1) + 2q^n a_n a_{n+1} = a_{n+1} (1 - q^n a_{n+1}), \quad \text{(4)} \quad q^n (a_{n+1} + a_n)^2 = a_{n+1} + a_n,
```

因为直线l与曲线C有且只有一个公共点,

所以
$$\frac{|1-3|}{\sqrt{1+m^2}} = 1$$
,解得 $m = \pm \sqrt{3}$.

从而直线l的斜率为± $\frac{\sqrt{3}}{3}$. 10分

22. 因为 DA \bot 平面 ABC , $\angle CAB$ = 90° ,所以可以以 A 为坐标原点,建立如图所示的空间直角坐标系 A-xyz .

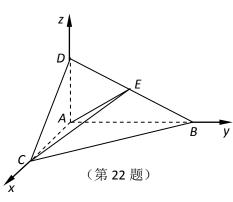
因为 AC = AD = 1, AB = 2, 所以 A(0,0,0), C(1,0,0), B(0,2,0), D(0,0,1), 因为点 E 为线段 BD 的中点,

所以 $E(0,1,\frac{1}{2})$.

(1)
$$\overrightarrow{AE} = (0,1,\frac{1}{2})$$
, $\overrightarrow{BC} = (1,-2,0)$,

所以
$$\cos\langle \overrightarrow{AE}, \overrightarrow{BC} \rangle = \frac{\overrightarrow{AE} \cdot \overrightarrow{BC}}{|\overrightarrow{AE}|| |\overrightarrow{BC}|} = \frac{-2}{\sqrt{\frac{5}{4}} \times \sqrt{5}} = -\frac{4}{5}$$

(2) 设平面 ACE 的法向量为 $\mathbf{n}_1 = (x, y, z)$,



因为 $\overrightarrow{AC} = (1,0,0)$, $\overrightarrow{AE} = (0,1,\frac{1}{2})$, 所以 $\mathbf{n}_1 \cdot \overrightarrow{AC} = 0$, $\mathbf{n}_1 \cdot \overrightarrow{AE} = 0$, 即x = 0且 $y + \frac{1}{2}z = 0$, 取y = 1, 得x = 0, z = -2, 所以 $n_1 = (0,1,-2)$ 是平面ACE的一个法向量. 设平面 BCE 的法向量为 $n_2 = (x, y, z)$, 因为 $\overrightarrow{BC} = (1, -2, 0)$, $\overrightarrow{BE} = (0, -1, \frac{1}{2})$, 所以 $\mathbf{n}_2 \cdot \overrightarrow{BC} = 0$, $\mathbf{n}_2 \cdot \overrightarrow{BE} = 0$, 即 x-2y=0 且 $-y+\frac{1}{2}z=0$,取 y=1,得 x=2, z=2, 所以 $n_2 = (2,1,2)$ 是平面BCE的一个法向量. 所以 $\cos\langle \mathbf{n}_1, \mathbf{n}_2 \rangle = \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1| |\mathbf{n}_2|} = \frac{-3}{\sqrt{5} \times \sqrt{9}} = -\frac{\sqrt{5}}{5}$. 23. (1) 证明: 当n=1时, $a_1=\frac{1}{3}\in(0,\frac{1}{2})$,结论显然成立; 假设当 $n = k, k \ge 2, k \in \mathbf{N}^*$ 时, $a_k \in (0, \frac{1}{2})$, 则当n=k+1时, $a_{k+1}=-2a_k^2+2a_k=-2(a_k-\frac{1}{2})^2+\frac{1}{2}\in(0,\frac{1}{2})$, (2) 由 (1) 知, $a_n \in (0, \frac{1}{2})$, 所以 $b_n = \frac{1}{2} - a_n \in (0, \frac{1}{2})$. 因为 $a_{n+1} = -2a_n^2 + 2a_n$, 所以 $\frac{1}{2} - a_{n+1} = \frac{1}{2} - (-2a_n^2 + 2a_n) = 2a_n^2 - 2a_n + \frac{1}{2} = 2(a_n - \frac{1}{2})^2$, $\mathbb{E}[b_{n+1}] = 2b_n^2$, 于是 $\log_2 b_{n+1} = 2\log_2 b_n + 1$, 所以 $(\log_2 b_{n+1} + 1) = 2(\log_2 b_n + 1)$, 故 $\{\log_2 b_n + 1\}$ 构成以 2 为公比的等比数列,其首项为 $\log_2 b_1 + 1 = \log_2 \frac{1}{6} + 1 = \log_2 \frac{1}{3}$. 于是 $\log_2 b_n + 1 = (\log_2 \frac{1}{3}) \cdot 2^{n-1}$,从而 $\log_2 (2b_n) = (\log_2 \frac{1}{3}) \cdot 2^{n-1} = \log_2 (\frac{1}{3})^{2^{n-1}}$, 因为当i=1,2时, $2^{i-1}=i$, 当*i*≥3时, $2^{i-1} = (1+1)^{i-1} = C_{i-1}^0 + C_{i-1}^1 + \dots + C_{i-1}^{i-1} > C_{i-1}^0 + C_{i-1}^1 = i$, 所以对 $\forall i \in \mathbf{N}^*$,有 $2^{i-1} \geqslant i$, 所以 $3^{2^{i-1}} \geqslant 3^i$, 所以 $\frac{1}{h} = 2 \cdot 3^{2^{i-1}} \geqslant 2 \cdot 3^i$,

$$\text{Min} \sum_{i=1}^{n} \frac{1}{b_i} = \frac{1}{b_1} + \frac{1}{b_2} + \dots + \frac{1}{b_n} \geqslant 2(3^1 + 3^2 + \dots + 3^n) = 2 \times \frac{3(1-3^n)}{1-3} = 3^{n+1} - 3 \dots \dots 10 \ \text{f}$$