一、抛运动的两个重要推论及应用

1. 做平抛运动的物体在某时刻速度方向、位移方向与初速度方向的夹角 θ 、 α 的关系为 an au = 2 an au.

证明: 如图所示,
$$\tan \theta = \frac{v_y}{v_x} = \frac{gt}{v_0}$$

证明:
$$x_A = v_0 t$$
, $y_A = \frac{1}{2} g t^2$, $v_y = g t$, $v_x = v_0$,

二、与斜面有关的平抛运动

与斜面有关的平抛运动,两种情况的特点及分析方法对比如下:

运动情形	题干信息	分析方法
从空中抛出垂直落到斜面上 の	速度方向	分解速度,构建速度三角形 $v_x=v_0$ $v_y=gt$ θ 与 v_0 、 t 的关系: $\tan\theta=\frac{v_x}{v_y}=\frac{v_0}{gt}$
从斜面抛出又落到斜面上 0 0 y	位移方向	分解位移,构建位移三角形 $x=v_0t$ $y=\frac{1}{2}gt^2$ θ 与 v_0 、 t 的关系: $\tan\theta=\frac{y}{x}=\frac{gt}{2v_0}$

三、类平抛运动

类平抛运动是指物体做曲线运动时,其运动可以分解为互相垂直的两个方向的分运动:一个方向是匀速直线运动,另一个方向是在恒定合外力作用下的初速度为零的匀加速直线运动.

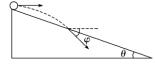
(1)类平抛运动的受力特点

物体所受的合外力为恒力,且与初速度方向垂直.

(2)类平抛运动的运动规律

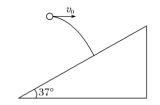
初速度 v_0 方向上: $v_x=v_0$, $x=v_0t$.

合外力方向上: $a=\frac{F_{\oplus}}{m}$, $v_y=at$, $y=\frac{1}{2}at^2$.

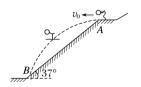

例 1: 如图所示,若物体自倾角为 θ 的固定斜面顶端沿水平方向抛出后仍落在斜面上,则物体与斜面接触时速度与水平方向的夹角 φ 满足(空气阻力不计,物体可视为质点)

A. $\tan \varphi = \sin \theta$

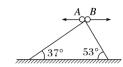
B. $\tan \varphi = \cos \theta$


C. $\tan \varphi = \tan \theta$

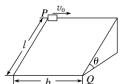
D. $\tan \varphi = 2 \tan \theta$


例 2: 如图所示,小球以 v_0 =15 m/s 的水平初速度向一倾角为 37°的斜面抛出,飞行一段时间后,恰好垂直撞在斜面上. 求这一过程中: (不计空气阻力,g 取 10 m/s², sin 37°=0.6, cos 37°=0.8)

- (1)小球在空中的飞行时间 t;
- (2)抛出点距撞击点的高度 h.


例 3: 跳台滑雪是一项勇敢者的运动,它需要利用山势特点建造一个特殊跳台. 一运动员穿着专用滑雪板,不带雪杖,在滑雪道上获得较高速度后从 A 点沿水平方向飞出,在空中飞行一段距离后在山坡上 B 点着陆,如图 4 所示. 已知可视为质点的运动员从 A 点水平飞出的速度 v_0 =20 m/s,山坡可看成倾角为 37°的斜面,不考虑空气阻力,(g=10 m/s²,sin 37°=0.6,cos 37°=0.8)求:

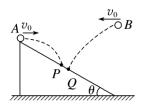
- (1)滑雪者在空中的飞行时间 t;
- (2)从抛出至落在斜面上的位移大小 s;
- (3)落到斜面上时的速度大小 v.


针对训练 1: 如图所示,两个相对的斜面的倾角分别为 37°和 53°,在斜面顶点把两个可视为质点的小球以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上.若不计空气阻力,则 $A \times B$ 两个小球的运动时间之比为

A. 1:1 B. 1:3 C. 16:9 D. 9:16

例 4: 如图 6 所示的光滑固定斜面长为 l、宽为 b、倾角为 θ ,一物块(可看成质点)从斜面左上方顶点 P 沿水平方向射入,恰好从底端右侧 Q 点离开斜面,已知重力加速度为 g,不计空气阻力,求:

- (1)物块加速度的大小 a:
- (2)可以把物块的运动怎样分解;
- (3)物块由P运动到O所用的时间t;
- (4)物块由P点水平射入时初速度的大小 v_0 .

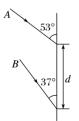


巩固练习:

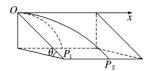
1. 在一斜面顶端,将甲、乙两个小球分别以v 和 $\frac{v}{2}$ 的速度沿同一方向水平抛出,两球都落在该斜面上、甲球落至斜面时的速率是乙球落至斜面时速率的

A. 2 倍 B. 4 倍 C. 6 倍 D. 8 倍

- 2. (多选)如图所示,一固定斜面倾角为 θ ,将小球 A 从斜面顶端以速度 v_0 水平向右抛出,击中了斜面上的 P 点,将小球 B 从空中某点以相同速率 v_0 水平向左抛出,恰好垂直斜面击中 Q 点,不计空气阻力,重力加速度为 g,下列说法正确的是
- A. 若小球 A 在击中 P 点时速度方向与水平方向所夹锐角为 φ ,则 $\tan \theta = 2\tan \varphi$
- B. 若小球 A 在击中 P 点时速度方向与水平方向所夹锐角为 φ ,则 tan φ =2tan θ
- C. 小球 $A \times B$ 在空中运动的时间之比为 $2 \tan^2 \theta$: 1
- D. 小球 $A \times B$ 在空中运动的时间之比为 $tan^2 \theta$: 1


3. 在电视剧里,我们经常看到这样的画面:屋外刺客向屋里投来两支飞镖,落在墙上,如图所示.现设飞镖是从同一位置做平抛运动射出来的,飞镖 A 与竖直墙壁成 53° 角,飞镖 B 与竖直墙壁成 37° 角,两落点相距为 d,试求刺客离墙壁有多远(已知 $\tan 37^{\circ} = \frac{3}{4}$, $\tan 53^{\circ} = \frac{4}{3}$)

B. 2*d*


 $C.\frac{24}{7}d$

 $D.\frac{12}{7}d$

4. 如图所示,A、B 两质点从同一点 O 分别以相同的水平速度 v_0 沿 x 轴正方向抛出,A 在竖直平面内运动,落地点为 P_1 ,B 沿光滑斜面运动,落地点为 P_2 , P_1 和 P_2 在同一水平地面上,不计阻力,则下列说法正确的是

- A. A. B 的运动时间相同
- B. $A \times B$ 沿 x 轴方向的位移相同
- C. A. B 运动过程中的加速度大小相同
- D. $A \times B$ 落地时速度大小相同

