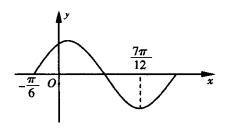
江苏省仪征中学 2018-2019 学年第一学期高三数学

周三练习(11)

2018. 11. 28

范围:集合与逻辑、函数与导数、三角函数、平面向量、直线与圆、圆锥曲线、不等式

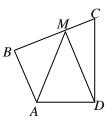
- 一. 填空题:本大题共 14 小题,每小题 5 分,计 70 分. 不需写出解答过程,请把答案写在答题纸的指定位置上.
- 1. 设全集 $U = \{1, 2, 3, 4, 5\}$,若集合 $A = \{3, 4, 5\}$,则 $\mathbb{C}_{U}A = \underline{\hspace{1cm}}$.
- 2. 命题 " $\exists x \in R, x^2 2x + 1 \ge 0$ "的否定是 .
- 3. 已知向量 $\mathbf{a} = (2, m)$, $\mathbf{b} = (1, -2)$,且 $\mathbf{a} \perp \mathbf{b}$,则实数m的值是______.
- 4. 函数 $f(x) = \lg(2-x) + \sqrt{2+x}$ 的定义域是______.
- 5. 已知扇形的半径为6,圆心角为 $\frac{\pi}{3}$,则扇形的面积为______.
- 6. 设等差数列 $\left\{a_{n}\right\}$ 的前 n 项和为 S_{n} , 若 $a_{3}=6$, $S_{7}=49$,则公差 d=______.
- 7. 设函数 $f(x) = A\sin(\omega x + \varphi)$ (A, ω, φ 为常数, 且 $A > 0, \omega > 0, 0 < \varphi < \pi$) 的部分图象如图所示, 则 φ 的值为______.



- 8. 在平面直角坐标系中,曲线 $y = e^x + 2x + 1$ 在 x = 0 处的切线方程是______.
- 9. 已知奇函数 y = f(x) 是 **R** 上的单调函数,若函数 $g(x) = f(x) + f(a x^2)$ 只有一个零点,则实数 a 的值为______.
- 10. 在 $\triangle ABC$ 中, $\sin A + 2\sin B\cos C = 0$,则 A 的最大值是______.
- 11. 已知函数 $f(x) = \begin{cases} x + \frac{2}{e}, x < 1, \\ \frac{\ln x}{x}, & x \ge 1, \end{cases}$,若 $f(x_1) \not = x_2(x_1) \not = x_3(x_1) \not = x_3$
- 12. 已知正实数 a,b 满足 $9a^2+b^2=1$,则 $\frac{ab}{3a+b}$ 的最大值为______.

13. 如图,在平面四边形 ABCD 中, $AB \perp BC$, $AD \perp CD$, $\angle BCD = 60^{\circ}$, $CB = CD = 2\sqrt{3}$. 若点 M 为

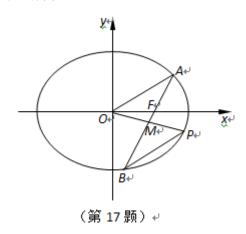
边 BC 上的动点,则 $\overrightarrow{AM} \cdot \overrightarrow{DM}$ 的最小值为______.



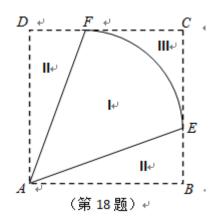
- 14. 函数 $f(x) = e^{x} |x-a|$ 在 (-1,2) 上单调递增,则实数 a 的取值范围是______.
- 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
- 15. (本题满分 14 分)已知 $\mathbf{m} = (2\cos 2\alpha + 3, 2\sin 2\alpha)$, $\mathbf{n} = (\sin \beta, \cos \beta)$.
- (1) 若 $\beta = \frac{\pi}{6}$, 且 $f(\alpha) = \mathbf{m} \cdot \mathbf{n}$, 求 $f(\alpha)$ 在 $[0, \frac{\pi}{2}]$ 上的取值范围;
- (2) 若m//n,且 $\alpha+\beta$ 、 α 的终边不在y轴上,求 $\tan(\alpha+\beta)\tan\alpha$ 的值.

- 16. 在 \triangle *ABC* 中,角 *A,B,C* 的对边分别为 *a,b,c* ,已知 $2\cos 2B 4\cos(A+C)=1$.
- (1) 求角 B 的值;
- (2) 若 $\cos A = \frac{\sqrt{13}}{13}$, c = 3, 求 $\triangle ABC$ 的面积.

- 17. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$,过右焦点F(1,0)的直线l与椭圆C交于A,B两点,且当点B是椭圆C的上顶点时,FB = 2FA,线段AB的中点为M.
 - (1) 求椭圆C的方程;
 - (2) 延长线段 OM 与椭圆 C 交于点 P ,若 $\overrightarrow{OA} = \overrightarrow{BP}$,求此时 l 的方程.



- 18. 某地拟规划种植一批芍药,为了美观,将种植区域(区域 I)设计成半径为 1km 的扇形 EAF,中心角 $\angle EAF = \theta$ ($\frac{\pi}{4} < \theta < \frac{\pi}{2}$). 为方便观赏,增加收入,在种植区域外围规划观赏区(区域 II)和休闲区(区域 III),并将外围区域按如图所示的方案扩建成正方形 ABCD,其中点 E , F 分别在边 BC 和 CD 上.已知种植区、观赏区和休闲区每平方千米的年收入分别是 10 万元、20 万元、20 万元.
 - (1) 要使观赏区的年收入不低于 5 万元, 求 θ 的最大值;
 - (2) 试问: 当 θ 为多少时, 年总收入最大?



- 19. 己知 $f(x) = e^x \frac{a}{e^x}$ 是奇函数.
 - (1) 求实数 a 的值;
 - (2) 求函数 $y = e^{2x} + e^{-2x} 2\lambda f(x)$ 在 $x \in [0, +\infty)$ 上的值域;
- (3) $\Rightarrow g(x) = f(x) 2x$, 求不等式 $g(x^3 + 1) + g(1 3x^2) < 0$ 的解集.

- 20. 设函数 $f(x) = \ln x ax^2 + ax$, $a \in \mathbf{R}$.
- (1) 当a=1时,求函数f(x)的在点(2,f(2))处的切线方程;
- (2) 讨论函数 y = f(x) 的单调性,并写出单调区间;
- (3) 当a>0时,若函数 y=f(x)有唯一零点,求实数a的值.

江苏省仪征中学 2018-2019 学年第一学期高三数学

周三练习(11)参考答案

2018. 11. 28

1.
$$\{1,2\}$$

1.
$$\{1,2\}$$
 2. $\forall x \in R, x^2 - 2x + 1 < 0$ 3. 1 4. $[-2,2)$ 5. 6π

6. 1

7.
$$\frac{\pi}{3}$$

8.
$$y = 3x + 2$$

9.
$$-\frac{1}{4}$$

10.
$$\frac{\pi}{6}$$

7.
$$\frac{\pi}{3}$$
 8. $y = 3x + 2$ 9. $-\frac{1}{4}$ 10. $\frac{\pi}{6}$ 11. $(-\frac{1}{e^2}, 0)$

12.
$$\frac{\sqrt{2}}{12}$$

13.
$$\frac{21}{4}$$

12.
$$\frac{\sqrt{2}}{12}$$
 13. $\frac{21}{4}$ 14. $a \le -1 \not\equiv a \ge 3$

15.解: (1) 因为
$$\beta = \frac{\pi}{6}$$
,所以 $\mathbf{n} = (\frac{1}{2}, \frac{\sqrt{3}}{2})$.

所以
$$f(\alpha) = \mathbf{m} \cdot \mathbf{n} = \cos 2\alpha + \sqrt{3} \sin 2\alpha + \frac{3}{2}$$
,

$$\mathbb{H} f(\alpha) = 2\sin(2\alpha + \frac{\pi}{6}) + \frac{3}{2},$$

所以
$$f(\alpha)$$
的取值范围是 $[\frac{1}{2}, \frac{7}{2}]$.

(2) 由
$$m/n$$
, 所以 $(2\cos 2\alpha + 3)\cos \beta - 2\sin 2\alpha \sin \beta = 0$,

所以
$$2\cos(2\alpha+\beta)+3\cos\beta=0$$
,

所以 $2\cos(\alpha+\beta)\cos\alpha-2\sin(\alpha+\beta)\sin\alpha+3\cos(\alpha+\beta)\cos\alpha+3\sin(\alpha+\beta)\sin\alpha=0$,

因为 $\alpha + \beta$ 、 α 的终边不在 y 轴上,所以 $\cos(\alpha + \beta)$, $\cos \alpha$ 均不为 0,

所以
$$5\cos(\alpha + \beta)\cos\alpha + \sin(\alpha + \beta)\sin\alpha = 0$$
,

因为所以
$$\tan(\alpha + \beta) \tan \alpha = -5$$
.

$$A + C = \pi - B$$

$$\therefore 2\cos 2B - 4\cos(A+C) = 1$$

$$2(2\cos^2 B - 1) - 4\cos(\pi - B) = 1$$

$$\therefore 4\cos^2 B + 4\cos B - 3 = 0$$

(2) : 在 $\triangle ABC$ 中, $A \in (0,\pi)$

$$\therefore \sin A = \sqrt{1 - \cos^2 A}$$

$$=\sqrt{1-(\frac{\sqrt{13}}{13})^2}=\frac{2\sqrt{39}}{13}$$

$$\therefore B = \frac{\pi}{3}, \quad \therefore \sin B = \frac{\sqrt{3}}{2}$$

$$A + B + C = \pi$$

16.

$$\therefore \sin C = \sin(\pi - (A+B)) = \sin(A+B)$$

 $= \sin A \cos B + \cos A \sin B$

$$=\frac{2\sqrt{39}}{13}\times\frac{1}{2}+\frac{\sqrt{13}}{13}\times\frac{\sqrt{3}}{2}=\frac{3\sqrt{39}}{26}$$

 $\therefore (2\cos B - 1)(2\cos B + 3) = 0$

$$\cos B = \frac{1}{2} \vec{\boxtimes} \cos B = -\frac{3}{2} \quad (£)$$

∴
$$\triangle ABC$$
 , $B \in (0,\pi)$

$$\therefore B = \frac{\pi}{3}.$$

由正弦定理: $\frac{c}{\sin C} = \frac{b}{\sin B}$

$$X c = 3$$

$$\therefore \frac{3}{\frac{3\sqrt{39}}{26}} = \frac{b}{\frac{\sqrt{3}}{2}}, \quad \text{iff } b = \frac{4\sqrt{13}}{3}$$

$$\therefore S_{\Delta ABC} = \frac{1}{2}bc \sin A$$
$$= \frac{1}{2} \times \frac{4\sqrt{13}}{2} \times 3 \times \frac{2\sqrt{39}}{12} = 4\sqrt{3}.$$

(1) 由题意可以知 $\overrightarrow{BF} = 2\overrightarrow{FA}$, F(1,0)、B(0,b), 设 $A(x_0,y_0)$

 $\therefore b^2 = a^2 - 1 = 2 \therefore 椭圆 C 的方程为: \frac{x^2}{3} + \frac{y^2}{2} = 1$

(2) 当直线 l 与垂直或与 x 轴重合时,不满足题意

:. 可设直线l 方程为: x=ty+1

设
$$A(x_1, y_1)$$
、 $B(x_2, y_2)$ 、 $M(x_M, y_M)$ 、 $P(x_P, y_P)$

由 $\overline{OA} = \overline{BP}$ 可知四边形OBPA为平行四边形

:.点M为线段OP的中点

由 $M(x_M,y_M)$ 为线段AB的中点,点 $A(x_1,y_1)$ 、 $B(x_2,y_2)$ 在椭圆C上

$$\therefore \begin{cases} \frac{x_1^2}{3} + \frac{y_1^2}{2} = 1\\ \frac{x_2^2}{3} + \frac{y_2^2}{2} = 1 \end{cases} \quad \text{iff } \frac{(x_1 + x_2)(x_1 - x_2)}{3} + \frac{(y_1 + y_2)(y_1 - y_2)}{2} = 0$$

可得
$$\frac{t \cdot x_M}{3} + \frac{y_M}{2} = 0$$
 又 $x_M = ty_M + 1$

可解得
$$\begin{cases} x_M = \frac{3}{2t^2 + 3} \\ y_M = \frac{-2t}{2t^2 + 3} \end{cases} \therefore \begin{cases} x_P = \frac{6}{2t^2 + 3} \\ y_P = \frac{-4t}{2t^2 + 3} \end{cases}$$

∵点P在椭圆C上

$$\therefore \frac{\left(\frac{6}{2t^2+3}\right)^2}{3} + \frac{\left(\frac{-4t}{2t^2+3}\right)^2}{2} = 1 \quad \text{整理得} \quad 4t^4 + 4t^2 - 3 = 0 \quad 解得 \quad t^2 = \frac{1}{2} \text{ 或 } t^2 = -\frac{3}{2} \text{ 舍去}$$

$$\therefore t = \pm \frac{1}{\sqrt{2}} \quad \text{可知直线} \, l \, \text{的方程为} \, x = \pm \frac{1}{\sqrt{2}} \, y + 1 \, \text{即} \, \sqrt{2} \, x \pm y - \sqrt{2} = 0 \, .$$

解析: (1) 因为AF = AE = 1, AD = AB, $\angle D = \angle B = \frac{\pi}{2}$, 所以 $\triangle ADF$ 与 $\triangle ABE$ 全等.

所以
$$\angle DAF = \angle BAE = \frac{1}{2} \left(\frac{\pi}{2} - \theta \right)$$
, 观赏区的面积为

$$S_{\text{II}} = 2 \times \frac{1}{2}DF \cdot AD = \sin \angle DAF \cdot \cos \angle DAF = \frac{1}{2}\sin 2\angle DAF = \frac{1}{2}\sin \left(\frac{\pi}{2} - \theta\right) = \frac{1}{2}\cos \theta$$

要使得观赏区的年收入不低于 5 万元,则要求 $S_{II} \geq \frac{5}{20} = \frac{1}{4}$,即 $\cos\theta \geq \frac{1}{2}$,结合 $\frac{\pi}{4} < \theta < \frac{\pi}{2}$ 可知 $\frac{\pi}{4} < \theta \leq \frac{\pi}{3}$,即 θ 的最大值为 $\frac{\pi}{3}$.

(2) 种植区的面积为
$$S_{\rm I} = \frac{1}{2} AF \cdot AE \cdot \theta = \frac{1}{2} \theta$$
,

设年总收入为 $W(\theta)$ 万元,则

$$W(\theta) = 10S_{\rm I} + 20S_{\rm III} + 20S_{\rm III} = 10S_{\rm I} + 20\left(S - S_{\rm I}\right) = 5\theta + 20\left(\frac{1 + \sin\theta}{2} - \frac{1}{2}\theta\right) = 10 + 10\sin\theta - 5\theta$$

其中
$$\frac{\pi}{4}$$
< θ < $\frac{\pi}{2}$, 求导可得 $W'(\theta)$ =10 $\cos\theta$ -5.

当
$$\frac{\pi}{4} < \theta \le \frac{\pi}{3}$$
 时, $W'(\theta) > 0$, $W(\theta)$ 递增; 当 $\frac{\pi}{3} < \theta < \frac{\pi}{2}$ 时, $W'(\theta) < 0$, $W(\theta)$ 递增.

所以当 $\theta = \frac{\pi}{3}$ 时, $W(\theta)$ 取得最大值,此时年总收入最大.

当
$$a=1$$
时, $f(-x)=e^{-x}-\frac{1}{e^{-x}}=-e^x+\frac{1}{e^x}=-f(x)$,此时 $f(x)$ 为奇函数.4 分

(2)
$$\Leftrightarrow e^x - \frac{1}{e^x} = t \ (t \ge 0), \text{ fill } e^{2x} + \frac{1}{e^{2x}} = t^2 + 2$$

所以
$$h(t) = t^2 - 2\lambda t + 2$$
,对称轴 $t = \lambda$,

①当
$$\lambda \leq 0$$
时, $h(t) \in [h(0), +\infty)$,所求值域为 $[2, +\infty)$;

②当
$$\lambda > 0$$
时, $h(t) \in [h(\lambda), +\infty)$,所求值域为 $[2-\lambda^2, +\infty)$;

(3) 因为
$$f(x) = e^x - \frac{1}{e^x}$$
 为奇函数,所以 $g(-x) = f(-x) - 2(-x) = -f(x) + 2x = -g(x)$,

所以 g(x) = f(x) - 2x 为奇函数,

又
$$g'(x) = f'(x) - 2 = e^x + \frac{1}{e^x} - 2 \ge 2 - 2 = 0$$
 当且仅当 $x = 0$ 时,等号成立,

所以 g(x) = f(x) - 2x 在 R 上单调增,

$$\mathbb{I}[x^3 - 3x^2 + 2 < 0], \quad \mathbb{Z}[x^3 - 3x^2 + 2 = (x - 1)(x^2 - 2x - 2) < 0],$$

20.

解:

$$f'(x) = -\frac{2ax^2 - ax - 1}{x}$$

①
$$a=1$$
时, $f(2)=\ln 2-2$, $f'(2)=\frac{5}{2}$, 所以切线为: $y=\frac{5}{2}x-7+\ln 2$

2)分类讨论

$$-8 \le a \le 0, f(x) \ge 0$$
, 在定义域上单调递增

$$a > 0 \Rightarrow x \in \left(0, \frac{1+\sqrt{1+\frac{8}{a}}}{4}\right), f(x) \uparrow; x \in \left(\frac{1+\sqrt{1+\frac{8}{a}}}{4}, +\infty\right), f(x) \downarrow$$

$$a < 0 \Rightarrow x \in \left(0, \frac{1 - \sqrt{1 + \frac{8}{a}}}{4}\right), f(x) \uparrow; x \in \left(\frac{1 - \sqrt{1 + \frac{8}{a}}}{4}, \frac{1 + \sqrt{1 + \frac{8}{a}}}{4}\right); f(x) \downarrow$$

$$, x \in \left(\frac{1 + \sqrt{1 + \frac{8}{a}}}{4}, +\infty\right) f(x) \uparrow$$

③令极大值横坐标值为: x_1 , 那么 $2ax_1^2 - ax_1 - 1 = 0$

$$x \in (0,1), f(x) < \ln x + a, \{y \mid y = \ln x + a\} \supset (-\infty,0)$$

$$x \in (1,+\infty), f(x) < x-1-ax^2+ax,$$
 $\{y \mid y = -ax^2 + (a+1)x - 1, x \in (1,+\infty)\} \supset (-\infty,0)$ 故函数两端都无穷小

$$f(x)$$
 有唯一零点 \Leftrightarrow $f(x_1) = \ln x_1 + \frac{a}{2}x_1 - \frac{1}{2} = 0$

$$p(a) = \ln \frac{1 + \sqrt{1 + \frac{8}{a}}}{4} + \frac{a}{2} \frac{1 + \sqrt{1 + \frac{8}{a}}}{4} - \frac{1}{2} = 0 \Rightarrow a = 1$$

这里要证明唯一解:

综上所述: a=1