三角函数单项选择题

一、基础题:

1. [2010 全国大纲版 I 卷 (文) T1] cos 300°=

A.
$$-\frac{\sqrt{3}}{2}$$
 B. $-\frac{1}{2}$ C. $\frac{1}{2}$

B.
$$-\frac{1}{2}$$

C.
$$\frac{1}{2}$$

D.
$$\frac{\sqrt{3}}{2}$$

【解答】解: $\cos 300^{\circ} = \cos(360^{\circ} - 60^{\circ}) = \cos 60^{\circ} = \frac{1}{2}$.

故选: C.

2. [2010 全国大纲版 I 卷 (理) T2]记 $\cos(-80^{\circ}) = k$,那么 $\tan 100^{\circ} = ($

A.
$$\frac{\sqrt{1-k^2}}{k}$$

A.
$$\frac{\sqrt{1-k^2}}{k}$$
 B. $-\frac{\sqrt{1-k^2}}{k}$ C. $\frac{k}{\sqrt{1-k^2}}$ D. $-\frac{k}{\sqrt{1-k^2}}$

$$C. \frac{k}{\sqrt{1-k^2}}$$

$$D. -\frac{k}{\sqrt{1-k^2}}$$

【解答】解: 法一 $\sin 80^{\circ} = \sqrt{1-\cos^2 80^{\circ}} = \sqrt{1-\cos^2 (-80^{\circ})} = \sqrt{1-k^2}$,

所以 $\tan 100^\circ = -\tan 80^\circ = -\frac{\sin 80^\circ}{\cos 80^\circ} = -\frac{\sqrt{1-k^2}}{\iota}$. :

法二 $\cos(-80^\circ) = k \Rightarrow \cos(80^\circ) = k$, $\tan 100^\circ = \frac{\sin 100^\circ}{\cos 100^\circ} = \frac{\sin(180^\circ - 80^\circ)}{\cos(180^\circ - 80^\circ)} = \frac{\sin 80^\circ}{-\cos 80^\circ} = \frac{\sqrt{1 - k^2}}{-k}$

3. [2010 全国大纲版 II 卷(文)T3]已知 $\sin \alpha = \frac{2}{3}$,则 $\cos(\pi - 2\alpha) = ($

A.
$$-\frac{\sqrt{5}}{3}$$
 B. $-\frac{1}{9}$

B.
$$-\frac{1}{9}$$

C.
$$\frac{1}{9}$$

C.
$$\frac{1}{9}$$
 D. $\frac{\sqrt{5}}{3}$

【解答】解: $\because \sin a = \frac{2}{3}$,

 $\therefore \cos(\pi - 2a) = -\cos 2a = -(1 - 2\sin^2 a) = -\frac{1}{9}.$

故选: B.

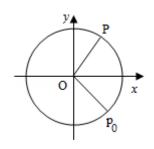
4. [2010 全国大纲版 II 卷(理)T7]为了得到函数 $y = \sin(2x - \frac{\pi}{3})$ 的图象,只需把函数

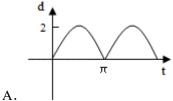
$$y = \sin(2x + \frac{\pi}{6})$$
 的图象()

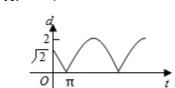
A. 向左平移
$$\frac{\pi}{4}$$
个长度单位 B. 向右平移 $\frac{\pi}{4}$ 个长度单位

B. 向右平移
$$\frac{\pi}{4}$$
个长度单位

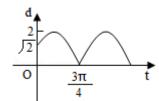
C. 向左平移
$$\frac{\pi}{2}$$
个长度单位

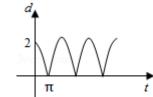

C. 向左平移
$$\frac{\pi}{2}$$
个长度单位 D. 向右平移 $\frac{\pi}{2}$ 个长度单位


【解答】解: $y = \sin(2x + \frac{\pi}{6}) = \sin 2(x + \frac{\pi}{12})$, $y = \sin(2x - \frac{\pi}{3}) = \sin 2(x - \frac{\pi}{6})$,


所以将 $y = \sin(2x + \frac{\pi}{6})$ 的图象向右平移 $\frac{\pi}{4}$ 个长度单位得到 $y = \sin(2x - \frac{\pi}{3})$ 的图象,

故选: B.


5. [2010 全国新课标(文)T6(理)T 4]如图,质点 P 在半径为 2 的圆周上逆时针运动,其初始位置为 P_0 ($\sqrt{2}$, $-\sqrt{2}$),角速度为 1,那么点 P 到 x 轴距离 d 关于时间 t 的函数图象大致为(



C.

В.

【解答】解:通过分析可知当 t=0 时,点 P 到 x 轴距离 d 为 $\sqrt{2}$,于是可以排除答案 A,D,

再根据当 $t = \frac{\pi}{4}$ 时,可知点 P 在 x 轴上此时点 P 到 x 轴距离 d 为 0,排除答案 B,

故选: C.

6. [2011 全国大纲版(文)T7(理)T 5]设函数 $f(x) = \cos \omega x$ ($\omega > 0$),将 y = f(x) 的图象 向右平移 $\frac{\pi}{3}$ 个单位长度后,所得的图象与原图象重合,则 ω 的最小值等于(

A. $\frac{1}{3}$

B. 3

C. 6

D. 9

【解答】解: f(x) 的周期 $T=\frac{2\pi}{\omega}$, 函数图象平移 $\frac{\pi}{3}$ 个单位长度后,所得的图象与原图象重

合,说明函数平移整数个周期,所以 $\frac{\pi}{3} = k \cdot \frac{2\pi}{\omega}$, $k \in \mathbb{Z}$. 令 k=1,可得 $\omega=6$.

故选: C. 7. [2012 全国大纲版(文)T3]若函数 $f(x) = \sin \frac{x + \varphi}{3} (\varphi \in [0, 2\pi])$ 是偶函数,则 $\varphi = (0, 2\pi]$ B. $\frac{2\pi}{2}$ D. $\frac{5\pi}{3}$ C. $\frac{3\pi}{2}$ A. $\frac{\pi}{2}$ 【解答】解: 因为函数 $f(x) = \sin \frac{x+\phi}{3} (\phi \in [0,2\pi])$ 是偶函数, 所以 $\frac{\phi}{3} = k\pi + \frac{\pi}{2}$, $k \in \mathbb{Z}$, 所以k = 0时, $\phi = \frac{3\pi}{2} \in [0, 2\pi]$. 故选: C. 8. [2012 全国大纲版(文)T4]已知 α 为第二象限角, $\sin \alpha = \frac{3}{5}$,则 $\sin 2\alpha = ($ A. $-\frac{24}{25}$ B. $-\frac{12}{25}$ C. $\frac{12}{25}$ D. $\frac{24}{25}$ 【解答】解:因为 α 为第二象限角, $\sin \alpha = \frac{3}{5}$, 所以 $\cos \alpha = -\sqrt{1 - \sin^2 \alpha} = -\frac{4}{5}$. 所以 $\sin 2\alpha = 2\sin \alpha \cos \alpha = -2 \times \frac{3}{5} \times \frac{4}{5} = -\frac{24}{25}$. 故选: A. 9. [2012 全国新课标(文)T9]已知 $\omega > 0$, $0 < \varphi < \pi$,直线 $x = \frac{\pi}{4}$ 和 $x = \frac{5\pi}{4}$ 是函数 $f(x) = \sin(\omega x + \varphi)$ 图象的两条相邻的对称轴,则 $\varphi = ($) B. $\frac{\pi}{2}$ C. $\frac{\pi}{2}$ D. $\frac{3\pi}{4}$ A. $\frac{\pi}{4}$ 【解答】解: 因为直线 $x = \frac{\pi}{4}$ 和 $x = \frac{5\pi}{4}$ 是函数 $f(x) = \sin(\omega x + \varphi)$ 图象的两条相邻的对称轴,

所以 $T=2 imes(rac{5\pi}{4}-rac{\pi}{4})=2\pi$. 所以 $\omega=1$,并且 $\sin(rac{\pi}{4}+arphi)$ 与 $\sin(rac{5\pi}{4}+arphi)$ 分别是最大值与最小 值, $0 < \varphi < \pi$,

所以 $\varphi = \frac{\pi}{4}$.

故选: A.

10. [2013 全国大纲卷(文)-T02]若 α 为第二象限角, $\sin \alpha = \frac{5}{13}$,则 $\cos \alpha = ($

A.
$$-\frac{12}{13}$$

A.
$$-\frac{12}{13}$$
 B. $-\frac{5}{13}$ C. $\frac{5}{13}$

C.
$$\frac{5}{13}$$

D.
$$\frac{12}{13}$$

【解答】解: α 为第二象限角,且 $\sin \alpha = \frac{5}{13}$,

$$\therefore \cos \alpha = -\sqrt{1 - \sin^2 \alpha} = -\frac{12}{12}.$$
 故选: A.