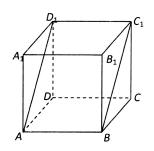
江苏省仪征中学 2020-2021 学年第二学期

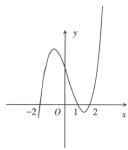
高二数学周练(2)

- 一、单项选择题(本大题共8小题,共40.0分)
- 1. 设复数 $z = 1 + bi(b \in R)$, 且 $z^2 = -3 + 4i$, 则 \overline{z} 的虚部为()
 - A. 2
- B. -2i
- C. 2
- D. -2
- 2. 设函数 $f(x) = 1 + \sin 2x$,则 $\lim_{\Delta x \to 0} \frac{f(\Delta x) f(0)}{\Delta x}$ 等于()
 - A. -2
- B. 0
- C. 3
- D. 2

- 3. 下列四个选项中,正确的是()
 - A. 复平面内实轴上的点都表示实数,虚轴上的点都表示纯虚数
 - B. 若复数 z_1 , z_2 满足 $z_1^2 + z_2^2 = 0$, 则 $z_1^2 = 0$ 且 $z_2^2 = 0$
 - C. 若复数 z_1 , z_2 满足 $|z_1| = |z_2|$, 则 $z_1^2 = z_2^2$
 - D. 设z为复数,a, $b \in R$, 若 $z + a = 2\overline{z} = bi$, 则 $\overline{z} + a = 2z bi$
- 4. 若直线y = 2x + b是曲线 $y = 2a \ln x$ 的切线,且a > 0,则实数 b的最小值是(
 - **A**. 1
- B. -1
- C. 2
- D. -2
- 5. 己知函数 $f(x) = \frac{1}{2}x^2 a\ln x + x$ 在[1, + ∞)上单调递增,则实数 a 的取值范围是()
 - A. $a \leq 0$
- B. $0 \le a \le 1$
- C. $a \leq 2$
- D a < 2
- 6. 设直线x = t与函数 $f(x) = x^2$, $g(x) = \ln x$ 的图像分别交于点M, N,则当|MN|达到最小时 t 的值为()
 - **A**. 1
- B. $\frac{1}{2}$
- C. $\frac{\sqrt{5}}{2}$
- D. $\frac{\sqrt{2}}{2}$
- 7. 如图,正方体 $ABCD A_1B_1C_1D_1$ 的棱长为 1,则下列四个命题错误的是()
 - A. 直线 BC 与平面 ABC_1D_1 所成的角等于 $\frac{\pi}{4}$
 - B. 点 C 到面 ABC_1D_1 的距离为 $\frac{\sqrt{2}}{2}$
 - C. 两条异面直线 D_1C 和 BC_1 所成的角为 $\frac{\pi}{4}$
 - D. 三棱柱 $AA_1D_1 BB_1C_1$ 外接球半径为 $\frac{\sqrt{3}}{2}$

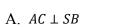


- 8. 已知函数f(x)的导函数为f'(x),函数g(x) = (x-1)f'(x)的图象如图所示,则下列结论正确的是()
 - A. f(x)在($-\infty$, -2),(1,2)上为减函数
 - B. f(x)在(-2,1), (2,+∞)上为增函数
 - C. f(x)的极小值为f(-2),极大值为f(2)
 - D. f(x)的极大值为f(-2),极小值为f(2)

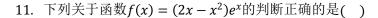


二、多项选择题(本大题共4小题,共20.0分)

- 9. 下列说法错误的有()
 - A. $f'(x_0)$ 是函数y = f(x)在 $x = x_0$ 附近的平均变化率.
 - B. 函数 $f(x) = \sin(-x)$ 的导数 $f'(x) = \cos x$.
 - C. 求 $f'(x_0)$ 时,可先求 $f(x_0)$,再求 $f'(x_0)$.
 - D. 曲线的切线与曲线不一定只有一个公共点.
- 10. 如图,四棱锥S—ABCD的底面为正方形,SD \bot 底面 ABCD,则下列结论正确结论的序号是()



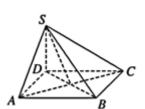
- C. AB 与 SC 所成的角等于 DC 与 SA 所成的角.
- D. 二面角B-SD-C的大小为 45°



- A. f(x)的单减区间是 $\left(-\sqrt{2},\sqrt{2}\right)$;
- B. $f(-\sqrt{2})$ 是极小值, $f(\sqrt{2})$ 是极大值;
- C. f(x)没有最小值,也没有最大值;
- D. f(x)有最大值,没有最小值.
- 12. *i* 是虚数单位,下列说法中正确的有()
 - A. 若复数 z 满足 $z \cdot \overline{z} = 0$,则z = 0
 - B. 若复数 z_1 , z_2 满足 $|z_1 + z_2| = |z_1 z_2|$, 则 $z_1z_2 = 0$
 - C. 若复数 $z = a + ai(a \in R)$,则z可能是纯虚数
 - D. 若复数 z 满足 $z^2 = 3 + 4i$,则 z 对应的点在第一象限或第三象限

三、填空题(本大题共3小题,共15.0分)

- 13. 已知复数 z 满足 $z + \frac{3}{z} = 0$,则 $|z| = ____.$
- 14. 已知函数 $f(x) = \frac{1}{3}x^3 + 2x^2 ax + 1$ 在(-1,2)上存在极值点,则实数 a 的取值范围是
- 15. 将正方形 ABCD 沿对角线 BD 折成直二面角,给出下列四个结论: $@AC \perp BD$; $@AB \lor$ CD 所成角为 60° ; $@\Delta ADC$ 为等边三角形; @AB 与平面 BCD 所成角为 60° .其中 真命题是_____.(请将你认为是真命题的序号都填上)
- 16. 德国数学家莱布尼茨是微积分的创立者之一,他从几何问题出发,引进微积分概念.在研究切线时,他将切线问题理解为"求一条切线意味着画一条直线连接曲线



上距离无穷小的两个点",这也正是导数定义的内涵之一.现已知直线y=x+b 是函数 $f(x)=\ln x$ 的切线,也是函数 $g(x)=e^{x+k}$ 的切线,则实 $b=___$, $k=___$.

- 五、解答题(本大题共6小题,共72.0分)
- 17. 已知函数 $f(x) = \frac{e^x}{x}$.
 - (1)求函数f(x)单调区间并画出函数简图;
 - (2)若曲线f(x)在某处切线平行于x轴,求切线方程.

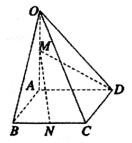
- 18. 己知关于 x 的方程 $x^2 (6+i)x + 9 + ai = 0 (a \in R)$ 有实数根 b.
 - (1)求实数 a, b 的值.
 - (2)若复数 z 满足|z-a+bi|-2|z|=0,求 z 为何值时,|z|有最小值,并求出|z|的最小值.

- 19. 已知函数 $f(x) = (\frac{1}{2}x^2 ax) \ln x \frac{1}{4}x^2 + ax(a$ 为常数).
 - (1)当a = 0 时,求曲线y = f(x)在点(e, f(e))处的切线与两坐标轴围成的三角形的面积;
 - (2)若存在 $x_0 \ge 1$ 使得 $f(x_0) < 0$,求 a 的取值范围.

20. 如图,在四棱锥O-ABCD中,底面 ABCD 是边长为 1 的菱形, $\angle ABC=\frac{\pi}{4}$, $OA\perp$

底面 ABCD, OA = 2, M 为 OA 的中点, N 为 BC 的中点.

- (1)证明: 直线MN//平面 OCD;
- (2)求异面直线 AB与 MD 的夹角的大小;
- (3)求点 B 到平面 OCD 的距离.



- 21. 已知函数f(x) = lnx 2x, $g(x) = -ax^2 + ax 2$.
 - (1)若曲线y = f(x)与y = g(x)在点(1, -2)处有相同的切线,求函数f(x) g(x)的极值;
 - (2)若h(x) = f(x) g(x),讨论函数h(x)的单调性.

- 22. 已知函数 $f(x) = x(1 + \ln x)$.
 - (1)求函数f(x)的极值;
 - (2) 若 $k \in \mathbb{Z}$, 且k(x-1) < f(x) 对任意x > 1 恒成立, 求k 的最大值.

答案和解析

1.【答案】D

【解析】

【分析】

本题考查了复数的运算法则、复数相等、虚部的定义,共轭复数,考查了推理能力与计算能力,属于基础题.

利用复数的运算法则、复数相等、共轭复数,虚部的定义即可得出.

【解答】

 $\mathfrak{M}: : z^2 = -3 + 4i, z = 1 + bi(b \in R),$

$$\therefore (1+bi)^2 = -3+4i, \ 1-b^2+2bi = -3+4i,$$

$$1 - b^2 = -3$$
, $2b = 4$,

解得b = 2.

即 $\overline{z} = 1 - 2i$,

则豆的虚部为-2.

故选 D.

2. 【答案】D

【解析】

【分析】

本题考查导数的定义,考查学生的计算能力,属于基础题.

利用导数的定义,即可得出结论.

【解答】

解: $: f(x) = 1 + \sin 2x$,

$$\therefore \lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = f'(0),$$

 $\overline{\mathbb{m}}f'(x) = 2\cos 2x$

所以f'(0) = 2,

故选 D.

3. 【答案】 D

【解析】

【分析】

本题考查复数的几何意义及复数运算,同时考查复数的模及复数相等,还考查了共轭复数,属于基础题.

逐一判断求解即可.

【解答】

解:对于A,虚轴上的原点不表示纯虚数,故A错误;

对于 B, 当 $z_1 = i$, $z_2 = 1$ 时, $z_1^2 + z_2^2 = 0$, 此时 $z_1^2 = -1$, $z_2^2 = 1$, 故 B 错误;

对于 C,当 $z_1 = 1$, $z_2 = i$ 时, $|z_1| = |z_2|$,此时 $z_1^2 = 1$, $z_2^2 = -1$,不满足 $z_1^2 = z_2^2$,故 C 错误:

对于 D, 设z = x + vi, x, $v \in R$, 由 $z + a = 2\overline{z} + bi$, a, $b \in R$,

得x + yi + a = 2(x - yi) + bi,

所以
$$\begin{cases} x + a = 2x \\ y = -2y + b \end{cases}$$

则
$$\overline{z} + a = x - yi + a = 2a - \frac{b}{3}i$$
,

$$2z - bi = 2x + 2yi - bi = 2a - \frac{b}{3}i$$

所以 $\overline{z} + a = 2z - bi$, 即 D 正确.

故选 D.

4. 【答案】 D

【解析】解: $y = 2a \ln x$ 的导数为 $y' = \frac{2a}{x}$,

由于直线y = 2x + b是曲线y = 2alnx的切线,

设切点为(m,n),

则
$$\frac{2a}{m}=2$$
, $\therefore m=a$,

 $\mathbb{Z} 2m + b = 2alnm$

$$\therefore b = 2alna - 2a(a > 0),$$

$$b' = 2(lna + 1) - 2 = 2lna$$

当a > 1时,b' > 0,函数 b 递增,

当 0 < a < 1 时,b' < 0,函数 b 递减,

 $\therefore a = 1$ 为极小值点,也为最小值点,

∴ b的最小值为: 2ln1-2=-2.

故选: D.

求出函数y = 2alnx的导数,设切点为(m,n),由条件得到 $\frac{2a}{m} = 2$,2m + b = 2alnm,即 有b = 2alna - 2a(a > 0),再对b求导,求出单调区间,极值也为最值,即可得到实数b的最小值.

本题考查利用导数研究过曲线上某点处的切线方程,考查利用导数求最值,考查数学转化思想方法,是中档题.

5.【答案】C

【解析】

【分析】

本题考查根据函数的单调性求解参数范围的问题,需要根据题意求导,参变分离求函数的最值,属于基础题.

由题可知在 $[1,+\infty)$ 上 $f^{(x)} \ge 0$ 恒成立,再参变分离求解函数最值即可.

【解答】

解: 由题意, $f^{-x}(x) = x - \frac{a}{x} + 1 \ge 0$ 在 $[1, +\infty)$ 上恒成立,

即 $a \le x^2 + x$ 在 $[1,+\infty)$ 上恒成立.

又 $y = x^2 + x, x \in [1, +\infty)$, 其导函数y = 2x + 1 > 0 恒成立.

故 $y = x^2 + x, x \in [1, +\infty)$ 的最小值为 $y = 1^2 + 1 = 2$.

所以*a*≤2.

故选: C

6. 【答案】 D

【解析】

【分析】

本题考查导数知识的运用,解题的关键是构造函数,确定函数的单调性,从而求出函数的最值,属中档题.

将问题转化为求两个函数差的最小值对应的自变量 x 的值. 将两个函数作差,得到函数 y = f(x) - g(x),再求此函数的最小值对应的自变量 x 的值即可求得答案.

【解答】

解: 设函数 $y = f(x) - g(x) = x^2 - \ln x$, 求导数得

$$y' = 2x - \frac{1}{x} = \frac{2x^2 - 1}{x}$$

当 $0 < x < \frac{\sqrt{2}}{2}$ 时,y' < 0,函数在 $(0, \frac{\sqrt{2}}{2})$ 上为单调递减函数,

当 $x > \frac{\sqrt{2}}{2}$ 时,y' > 0,函数在 $(\frac{\sqrt{2}}{2}, +\infty)$ 上为单调递增函数,

所以当 $x = \frac{\sqrt{2}}{2}$ 时,y 取得最小值为 $\frac{1}{2} + \frac{1}{2}ln2$,

即当|MN|达到最小时,t的值为 $\frac{\sqrt{2}}{2}$.

故选 D.

7.【答案】*C*

【解析】

【分析】

本题考查的知识要点:线面夹角的应用,异面直线的夹角的应用,三棱柱的外接球的半径的求法,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 直接利用线面夹角的应用,异面直线的夹角的应用,三棱柱的外接球的半径的求法的应

用求出结果.

【解答】

解:正方体 $ABCD - A_1B_1C_1D_1$ 的棱长为 1,

对于选项 A:直线 BC 与平面 ABC_1D_1 所成的角为 $\angle CBC_1 = \frac{\pi}{4}$, 故选项 A 正确.

对于选项 B:点 C 到面 ABC_1D_1 的距离为 B_1C 长度的一半,即 $h=\frac{\sqrt{2}}{2}$,故选项 B 正确.

对于选项 C:易知 $BC_1//AD_1$,所以 $\angle AD_1C$ 为两条异面直线 D_1C 和 BC_1 所成的角,易知 ΔAD_1C 等边三角形,所以两条异面直线 D_1C 和 BC_1 所成的角为 $\frac{\pi}{3}$,故选项 C 错误.

对于选项 D:三棱柱 $AA_1D_1 - BB_1C_1$ 外接球半径 $r = \frac{\sqrt{1^2+1^2+1^2}}{2} = \frac{\sqrt{3}}{2}$,故选项 D 正确.

故选 C.

8. 【答案】 D

【解析】

【分析】

本题考查利用导数研究函数的单调性和极值,函数图象的应用,属于基础题. 对x分类讨论,分析f'(x)的正负得到f(x)的单调性,进而判断出极值点即可.

【解答】

解: 函数g(x) = (x-1)f'(x)的图象知,

当x < -2时, x - 1 < 0, g(x) < 0, 则f'(x) > 0, 函数f(x)单调递增;

当-2 < x < 1 时, x - 1 < 0, g(x) > 0, 则f'(x) < 0, 函数f(x)单调递减;

当 1 < x < 2 时,x - 1 > 0,g(x) < 0,则f'(x) < 0,函数f(x)单调递减;

当x > 2 时, x - 1 > 0, g(x) > 0, 则f'(x) > 0, 函数f(x)单调递增.

所以函数f(x)在(-2,2)上为减函数,在 $(-\infty, -2)$, $(2, +\infty)$ 上为增函数,故 A,B 错误.

函数f(x)的极大值为f(-2),极小值为f(2),故 C 错误,D 正确.

故选 D.

9. 【答案】 ABC

【解析】

【分析】

本题考查导数的概念、几何意义、运算,属于基础题.

根据导数的概念,几何意义,运算法则判断.

【解答】

解: $A.f'(x_0)$ 是函数y = f(x)在 $x = x_0$ 附近的瞬时变化率,故 A 错误;

B.函数 $f(x) = \sin(-x)$ 的导数 $f'(x) = (-\sin x)' = -\cos x$,故 B 错误;

C.求f ' (x_0) 时,需先求f ' (x),再令 $x=x_0$ 得到f ' (x_0) ,如果先求 $f(x_0)$,求得

 $[f(x_0)]' = 0$, 故 C 错误;

D.曲线的切线与曲线不一定只有一个公共点, 正确.

故选 ABC.

10.【答案】ABD

【解析】

【分析】

本题考查了线面垂直的性质,线面平行的判定,异面直线所成的角及直线与平面所成的角,属于中档题.

A.利用正方形的性质和线面垂直的性质与判定即可得出;

B.利用线面所成角的定义判断即可;

C.平移分别找到两个角的平面角,即可求解.

D.根据二面角的定义找出平面角,即可求解.

【解答】

对于选项 B, 因为SD 上底面 ABCD, 则 SA 与平面 ABD 所成的角为 $\angle SAD$

SC 与平面 ABD 所成的角为 $\angle SCD$,因为 $\tan \angle SAD = \frac{SD}{AD}$, $\tan \angle SCD = \frac{SD}{CD}$,因为AD = CD,所以 $\tan \angle SAD = \tan \angle SCD$,

则 $\angle SAD = \angle SCD$, 故 B 中结论正确:

对于选项 C, :: AB//CD, :: AB与 SC 所成的角是 $\angle SCD$,DC与 SA 所成的角是 $\angle SAB$,而这两个角显然不相等,故 C 中结论错误.

对于选项 D, $SD \perp BD$, $CD \perp BD$, 则 $\angle BDC$ 为二面角B - SD - C的平面角, 又 $\angle BDC = 45^\circ$, 故 D 中结论正确.

故选 ABD.

11.【答案】BD

【解析】

【分析】

本题主要考查导数的单调区间与极值最值问题,属于基础题.首先要求导判断单调性,然后确定极值与最值即可

【解答】

解: 对于 A,由 $f(x) = (2x - x^2)e^x$,得 $f'(x) = (2 - x^2)e^x$,当 $x \in (-\sqrt{2}, \sqrt{2})$ 时,f'(x) > 0,

 $\therefore (-\sqrt{2},\sqrt{2})$ 是f(x)的单调递增区间,故 A 错误;

对于 B,由 A 知, f(x)在($-\infty$, $-\sqrt{2}$), ($\sqrt{2}$, $+\infty$)上是减函数,在($-\sqrt{2}$, $\sqrt{2}$)上是增函数,

 $:: f(-\sqrt{2}) \in f(x)$ 的极小值, $f(\sqrt{2}) \in f(x)$ 的极大值,故 B 正确;

对于 C,D,: $\exists x < -\sqrt{2}$ 时,f(x) < 0 恒成立,在 $(-\sqrt{2},\sqrt{2})$ 单调递增,在 $(\sqrt{2},+\infty)$ 上单调递减,

 \therefore 当 $x = \sqrt{2}$ 时,f(x)取得最大值,又当 $x \to + \infty$ 时, $f(x) \to -\infty$, $\therefore f(x)$ 无最小值,故 C错误,D 正确。

故选 BD.

12. 【答案】AD

【解析】

【分析】

本题考查复数的四则运算,共轭复数以及复数的代数表示和几何意义,属于基础题. 利用复数的四则运算,共轭复数以及复数的代数表示和几何意义,逐一判断即可.

【解答】

解: 对于 A, 设z = a + bi, a, $b \in R$, 则 $\overline{z} = a - bi$,

$$z \cdot \overline{z} = (a + bi)(a - bi) = a^2 + b^2 = 0$$
,可得 $a = b = 0$,所以 $z = 0$,故 A 正确;

对于
$$B$$
, 若 $z_1 = 1 + i$, $z_2 = 1 - i$,则 $|z_1 + z_2| = |z_1 - z_2|$,此时 $z_1 z_2 \neq 0$,故 B 错误;

对于 C,因为z = a + ai $(a \in R)$,有纯虚数的定义可知 z 不可能是纯虚数,故 C 错误;

对于
$$D$$
, 若 $z \in C$, 令 $z = a + bi$, a , $b \in R$,则 $z^2 = a^2 - b^2 + 2abi$,

所以
$$a^2 - b^2 = 3$$
, $2ab = 4$, 所以 $\begin{cases} a = 2 \\ b = 1 \end{cases}$ $\vec{x} \begin{cases} a = -2 \\ b = -1 \end{cases}$

z 对应的点在第一象限或第三象限,所以 D 正确;

故选 AD.

13.【答案】√3

【解析】

【分析】

本题考查复数代数形式的乘除运算,考查了复数相等的条件以及复数模的求法,是基础题.

设 $z = a + bi(a, b \in R)$,代入 $z^2 = -3$,由复数相等的条件列式求得 a,b 的值得答案.

【解答】解: 由 $z + \frac{3}{z} = 0$,

得 $z^2 = -3$,

设 $z = a + bi(a, b \in R)$,

由
$$z^2 = -3$$
,得 $(a + bi)^2 = a^2 - b^2 + 2abi = -3$,

即
$${a^2 - b^2 = -3, \quad \text{解得:} \begin{cases} a = 0 \\ b = \pm \sqrt{3} \end{cases}}$$

 $\therefore z = +\sqrt{3}i$.

则 $|z| = \sqrt{3}$.

故答案为: √3.

14. 【答案】(-3,12)

【解析】

【分析】

$$\begin{cases} f'(-1) = 1 - 4 - a < 0 \\ f'(2) = 4 + 8 - a > 0 \end{cases}$$
,解不等式组即得实数 a 取值的集合.

【解答】

::该函数的对称轴是: x = -2,

:: f(x)在(-1,2)上存在极值点,即函数f'(x)在该区间存在零点,且(-1,2)在x = -2的右边,

实数 a 的取值集合为: (-3,12).

故答案为(-3,12).

15.【答案】 ①②③

【解析】

【分析】

本题考查了空间直线与直线的关系,异面直线所成角,直线与平面所成角,利用空间向量求线线、线面的夹角,属于中档题.

根据已知中正方形 *ABCD* 沿对角线 *BD* 折成直二面角,以 *O* 点为坐标原点建立空间坐标系,求出 *ABCD* 各点坐标后,进而可以求出相关直线的方向向量及平面的法向量,然后代入线线夹角,线面夹角公式,分别计算即可得到答案.

【解答】

解: ①如图取 BD 中点 O, 连接 AO、CO,

易知 BD 垂直于平面 AOC, 由于 $AC \subset$ 平面 AOC,

故 BD ⊥ AC; 故 ②正确;

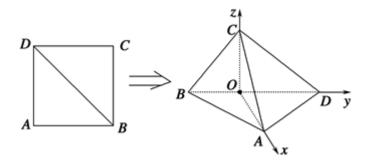
②如下图建立空间直角坐标系,设正方形边长为 a,

则
$$A(\frac{\sqrt{2}}{2}a,0,0), B(0,-\frac{\sqrt{2}}{2}a,0),$$

故
$$\overrightarrow{AB}=(-\frac{\sqrt{2}}{2}a,-\frac{\sqrt{2}}{2}a,0),\ C(0,0,\frac{\sqrt{2}}{2}a),\ D(0,\frac{\sqrt{2}}{2}a,0),\ \$$
故 $\overrightarrow{CD}=(0,\frac{\sqrt{2}}{2}a,-\frac{\sqrt{2}}{2}a),$

由两向量夹角公式得: $\cos (\overrightarrow{CD}, \overrightarrow{AB}) = -\frac{1}{2}$,

故两异面直线所成的角为 $\frac{\pi}{3}$; 故②正确;



③在直角三角形 AOC 中,由 $AO = CO = \frac{\sqrt{2}}{2}a$

解得: $AC = \sqrt{2}AO = a$, 故三角形 ADC 为等边三角形. 故③正确;

故答案为①②③.

16.【答案】-1

-2

【解析】

【分析】

本题考查了导数的几何意义和导数运算,属于基础题.

根据导数的几何意义求出切点,再分别求得b、k的值即可.

【解答】

解: 由题意令 $f'(x) = \frac{1}{x} = 1$, 故x = 1,

则函数f(x)上的切点为(1,0),代入y = x + b,得b = -1,

则函数g(x)上的切点为(-k,-k-1),代入 $g(x)=e^{x+k}$,得k=-2.

故答案为 -1; -2.

17.【答案】解:
$$(1)f'(x) = \frac{(e^x)' \cdot x - x' \cdot e^x}{x^2} = e^x \cdot \frac{x-1}{x^2}$$
;

(2)设切点坐标为 $(x_0, \frac{e^{x_0}}{x_0})$,

因为切线平行于 x 轴,故 $f'(x_0) = e^{x_0} \cdot \frac{x_0 - 1}{x_0^2} = 0$

解得 $x_0 = 1$, 故切点坐标为(1, e)

故处切线的方程为y - e = 0;

【解析】本题考查导数的运算和导数的几何意义,属于基础题.

- (1)利用导数的运算法则即可求解:
- (2)利用导数的几何意义即可求解.

18.【答案】解: (1): b是方程 $x^2 - (6+i)x + 9 + ai = 0 (a \in R)$ 的实根,

$$\therefore (b^2 - 6b + 9) + (a - b)i = 0,$$

∴
$$\begin{cases} b^2 - 6b + 9 = 0 \\ a = b \end{cases}$$
, 解之得 $a = b = 3$.

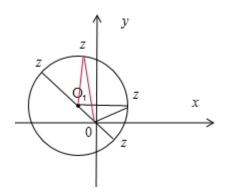
(2)
$$\forall z = x + yi(x, y \in R)$$
, $\exists |z - 3 + 3i| = 2|z|$,

得
$$(x-3)^2 + (y+3)^2 = 4(x^2 + y^2)$$
,

即
$$(x+1)^2 + (y-1)^2 = 8$$
,

 \therefore z点的轨迹是以 O_1 (− 1,1)为圆心, $2\sqrt{2}$ 为半径的圆,如图所示,

如图,



当z点在 00_1 的连线上时,|z|有最大值或最小值,

$$: |00_1| = \sqrt{2},$$

半径 $r = 2\sqrt{2}$,

 \therefore 当z = 1 - i时.

|z|有最小值,且 $|z|_{\min} = \sqrt{2}$.

【解析】本题考查复数相等,考查复数和它的共轭复数,复数的模,复数的几何意义,数形结合的思想方法,是有一定难度的中档题目.

(1)复数方程有实根,方程化简为a+bi=0(a、 $b\in R$),利用复数相等,即 $\begin{cases} a=0\\b=0 \end{cases}$,解

方程组即可.

(2) 先把 a、b 代入方程,同时设复数z = x + yi,化简方程,根据表达式的几何意义,方程表示圆,再数形结合,求出 z,得到|z|.

19.【答案】解: (I)函数f(x)的定义域为(0, +∞),

因为f'(x) = (x - a)lnx,

当
$$a = 0$$
时, $f'(e) = e$, $f(e) = \frac{1}{4}e^2$,切线方程为 $y = ex - \frac{3}{4}e^2$,

$$\Rightarrow x = 0$$
, $\Re y = -\frac{3}{4}e^2$,

$$\Rightarrow y = 0$$
,解得 $x = \frac{3}{4}e$,

所以
$$S = \frac{1}{2} \times \frac{3}{4} e^2 \times \frac{3}{4} e = \frac{9}{32} e^3$$
;

(Ⅱ)若要存在 $x_0 \ge 1$ 使得 $f(x_0) < 0$,

则只需f(x)在[1, + ∞)上的最小值小于 0 即可,

当 $a \le 1$ 时,f'(x) > 0 在 $(1, +\infty)$ 恒成立,函数f(x)在x = 1 处取得最小值,

所以
$$f_{\min}(x) = f(1) = -\frac{1}{4} + a < 0$$
,解得 $a < \frac{1}{4}$,

当a > 1 时,函数f(x)在[1,a)上单调递减,在[a,+ ∞)上单调递增,

则当x = a时取得极小值也是最小值,

由
$$f_{\min}(x) = f(a) = \frac{3}{4}a^2 - \frac{1}{2}a^2 \ln a < 0$$
解得 $_a > e^{\frac{3}{2}}$,

综上可得: a 的取值范围是 $(-\infty, \frac{1}{4}) \cup (e^{\frac{3}{2}}, +\infty)$.

【解析】本题考查导数的几何意义,考查利用导数研究函数的单调性、极值、最值,考查导数中恒成立与存在性问题,考查分析与计算能力,属于中档题.

(I)函数f(x)的定义域为 $(0, +\infty)$,求导,计算得切线方程为 $y = ex - \frac{3}{4}e^2$,令x = 0,

解得 $y = -\frac{3}{4}e^2$,令y = 0,解得 $x = \frac{3}{4}e$,即可求得切线与两坐标轴围成的三角形的面积;

(**I**)若要存在 $x_0 \ge 1$ 使得 $f(x_0) < 0$,则只需f(x)在[1, + ∞)上的最小值小于 0 即可,利用导数计算求解即可得到答案.

20. 【答案】 B N C P

解: 方法一(综合法)

(1)取 OB 中点 E, 连接 ME, NE

: ME//AB, AB//CD,

:: ME//CD, 且ME ⊄平面 OCD, CD ⊂平面 OCD,

∴ ME//平面 OCD,

又:: *NE*//*OC*,且*NE* ⊄平面 *OCD*, *OC* ⊂平面 *OCD*,

∴ NE//平面 OCD,

又: $ME \cap OE = E$, ME, $OE \subset \mathbb{P}$ 面 MNE,

::平面MNE//平面 OCD, 且MN ⊂平面 MNE,

:: MN//平面 OCD

(2) : CD//AB

∴ ∠MDC为异面直线 AB 与 MD 所成的角(或其补角)

作 $AP \perp CD \oplus P$, 连接MP,

∵ OA ⊥平面 *ABCD*,*MP* ⊂平面 *ABCD*,

 $\therefore CD \perp MP$,

$$\because \angle ADP = \frac{\pi}{4},$$

$$\therefore DP = \frac{\sqrt{2}}{2}, \quad MD = \sqrt{MA^2 + AD^2} = \sqrt{2},$$

$$\therefore \cos \angle MDP = \frac{DP}{MD} = \frac{1}{2}, \angle MDC = \angle MDP = \frac{\pi}{3},$$

所以 AB 与 MD 所成角的大小为 $\frac{\pi}{3}$.

(3) :: AB//平面 OCD,

::点 A 和点 B 到平面 OCD 的距离相等,连接 OP,过点 A 作 $AQ \perp OP$ 于点 Q,

 $: AP \perp CD, OA \perp CD,$

 $:: CD \perp$ 平面 OAP, $:: AQ \perp CD$.

又: $AQ \perp OP$, :: $AQ \perp$ 平面 OCD, 线段 AQ 的长就是点 A 到平面 OCD 的距离,

$$\because OP = \sqrt{OD^2 - DP^2} = \sqrt{OA^2 + AD^2 - DP^2} = \sqrt{4 + 1 - \frac{1}{2}} = \frac{3\sqrt{2}}{2}, \ AP = DP = \frac{\sqrt{2}}{2},$$

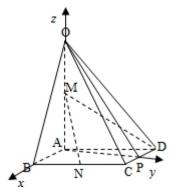
$$\therefore AQ = \frac{OA \cdot AP}{OP} = \frac{2 \cdot \frac{\sqrt{2}}{2}}{\frac{3\sqrt{2}}{2}} = \frac{2}{3}$$
,所以点 B 到平面 OCD 的距离为 $\frac{2}{3}$.

方法二(向量法)

作 $AP \perp CD$ 于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:

$$A(0,0, 0), B(1,0, 0), P(0,\frac{\sqrt{2}}{2},0), D(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0),$$

$$O(0,0, 2), M(0,0, 1), N(1-\frac{\sqrt{2}}{4},\frac{\sqrt{2}}{4},0)$$



$$(1)\overrightarrow{MN} = (1 - \frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4}, -1), \ \overrightarrow{OP} = (0, \frac{\sqrt{2}}{2}, -2), \ \overrightarrow{OD} = (-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, -2)$$

设平面 OCD 的法向量为n = (x,y, z),则 $\vec{n} \cdot \vec{OP} = 0$, $\vec{n} \cdot \vec{OD} = 0$

$$\lim_{x \to 0} \begin{cases} \frac{\sqrt{2}}{2}y - 2z = 0 \\ -\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y - 2z = 0 \end{cases}$$

 $\mathbf{R}_{z} = \sqrt{2},$ 解得

$$\vec{m} \cdot \vec{n} = (1 - \frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4}, -1) \cdot (0, 4, \sqrt{2}) = 0,$$

且MN ⊄平面 OCD,

- ∴ MN//平面 OCD.
- (2)设 AB 与 MD 所成的角为 θ ,

$$\vec{AB} = (1,0,0), \vec{MD} = (-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, -1)$$

$$\therefore \cos\theta = \frac{|\overrightarrow{AB} \cdot \overrightarrow{MD}|}{|\overrightarrow{AB}| \cdot |\overrightarrow{MD}|} = \frac{1}{2},$$

$$\therefore \theta = \frac{\pi}{3}$$
, $AB = MD$ 所成角的大小为 $\frac{\pi}{3}$.

(3)设点 B 到平面 OCD 的距离为 d,则 d 为 \overrightarrow{OB} 在向量 $\overrightarrow{n} = (0,4,\sqrt{2})$ 上的投影的绝对值,

曲
$$\overrightarrow{OB} = (1,0,-2)$$
,得 $d = \frac{|\overrightarrow{OB}\overrightarrow{n}|}{\overrightarrow{n}} = \frac{2}{3}$

所以点 B 到平面 OCD 的距离为 $\frac{2}{3}$.

【解析】本题考查线面平行的证明,异面直线所成的角、点到平面距离的计算,考查空间想象能力,培养学生利用多种方法解决数学问题的能力,考查学生利用空间向量求直线间的夹角和距离的能力,属中档题.

方法一: (1)取 OB 中点 E,连接 ME,NE,证明平面MNE//平面 OCD,方法是两个平面内相交直线互相平行得到,从而的到MN//平面 OCD:

(2) $: CD//AB, :: \angle MDC$ 为异面直线 AB 与 MD 所成的角(或其补角)作 $AP \perp CD$ 于 P,连接 MP

 $: OA \perp$ 平面 ABCD, $: CD \perp MP$ 菱形的对角相等得到 $\angle ABC = \angle ADC = \frac{\pi}{4}$,

利用菱形边长等于 1 得到 $DP = \frac{\sqrt{2}}{2}$,而 MD 利用勾股定理求得等于 $\sqrt{2}$,在直角三角形中,利用三角函数定义求出即可.

(3)AB//平面 OCD, ::点 A 和点 B 到平面 OCD 的距离相等, 连接 OP, 过点 A 作 $AQ \perp OP$ 于点 O,

 $: AP \perp CD, OA \perp CD, ∴ CD \perp$ ∓ $≡ OAP, ∴ AQ \perp CD,$

又: $AQ \perp OP$, : $AQ \perp$ 平面 OCD, 线段 AQ 的长就是点 A 到平面 OCD 的距离,求出距离可得.

方法二: (1)分别以 AB, AP, AO 所在直线为 x, y, z 轴建立坐标系,分别表示出 A, B, O, M, N 的坐标,

求出 \overrightarrow{MN} , \overrightarrow{OP} , \overrightarrow{OD} 的坐标表示. 设平面 OCD 的法向量为 $\overrightarrow{n}=(x_{,y},z)$,则 $n\cdot\overrightarrow{OP}=0,n\cdot\overrightarrow{OD}=0$,

解得
$$\overrightarrow{MN} \cdot n = (1 - \frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4}, -1) \cdot (0,4,\sqrt{2}) = 0$$
, $\therefore MN//$ 平面 OCD

(2)设 AB 与 MD 所成的角为 θ ,表示出 \overrightarrow{AB} 和 \overrightarrow{MD} ,利用 $a \cdot b = |a||b||\cos\alpha$ 求出叫即可.

(3)设点 B 到平面 OCD 的距离为 d,则 d 为 \overrightarrow{OB} 在向量 $n = (0,4,\sqrt{2})$ 上的投影的绝对值,由 $\overrightarrow{OB} = (1,0,-2)$,

得
$$d = \frac{|\overrightarrow{OB} \cdot n|}{|n|} = \frac{2}{3}$$
.所以点 B 到平面 OCD 的距离为 $\frac{2}{3}$.

21【答案】解:
$$(1)f'(x) = \frac{1}{x} - 2$$
, $f'(1) = 1 - 2 = -1$, $g'(x) = -2ax + a$, $g'(1) = -2a + a = -a$,

$$g(x) = -x^2 + x - 2$$
, $f(x) - g(x) = \ln x + x^2 - 3x + 2$,

$$\therefore [f(x) - g(x)]' = \frac{1}{x} + 2x - 3 = \frac{(x-1)(2x-1)}{x}, \ x > 0,$$

$$::$$
 $0 < x < \frac{1}{2}$ 或 $x > 1$ 时, $[f(x) - g(x)]^{\ /} > 0$, $\frac{1}{2} < x < 1$ 时, $[f(x) - g(x)]^{\ /} < 0$,

$$\therefore f(x) - g(x)$$
在 $(0,\frac{1}{2}]$ 上是增函数,在 $[\frac{1}{2},1]$ 上是减函数,在 $[1,+\infty)$ 上是增函数,

$$f(x) - g(x)$$
的极大值 $f(\frac{1}{2}) - g(\frac{1}{2}) = \frac{3}{4} - \ln 2$,极小值为 $f(1) - g(1) = 0$;

$$(2)h(x) = f(x) - g(x) = ax^2 - (a+2)x + 2 + lnx$$
的定义域为 $(0, + \infty)$,

$$h'(x) = 2ax - (a+2) + \frac{1}{x} = \frac{2ax^2 - (a+2)x + 1}{x} = \frac{(2x-1)(ax-1)}{x},$$

当 $a \le 0$ 时,: x > 0,: ax - 1 < 0, $: 0 < x < \frac{1}{2}$ 时,h'(x) > 0, $x > \frac{1}{2}$ 时,h'(x) < 0,

h(x)的单调增区间为 $(0,\frac{1}{2})$,单调减区间为 $(\frac{1}{2},+\infty)$,

当 0 < a < 2 时,h'(x) > 0 的解集为 $(0,\frac{1}{2}) \cup (\frac{1}{a}, +\infty)$,h'(x) < 0 解集为 $(\frac{1}{2},\frac{1}{a})$,h(x) 的单调增区间为 $(0,\frac{1}{2})$, $(\frac{1}{a}, +\infty)$,单调减区间为 $(\frac{1}{2},\frac{1}{a})$,

当a = 2 时, $h'(x) \ge 0$,当 $x = \frac{1}{2}$ 时取等号,h(x)的单调增区间为(0, + ∞),

当a > 2 时,h'(x) > 0 解集为 $(0, \frac{1}{a}) \cup (\frac{1}{2}, +\infty)$,h'(x) < 0 解集为 $(\frac{1}{a}, \frac{1}{2})$,h(x)的单调增区间为 $(0, \frac{1}{a})$, $(\frac{1}{2}, +\infty)$,单调减区间为 $(\frac{1}{a}, \frac{1}{2})$,

综上, $a \le 0$ 时,h(x)的单调增区间为 $(0,\frac{1}{2})$,单调减区间为 $(\frac{1}{2},+\infty)$,

0 < a < 2 时,h(x)的单调增区间为 $(0,\frac{1}{2})$, $(\frac{1}{a}, +\infty)$,单调减区间为 $(\frac{1}{2}, \frac{1}{a})$,

a=2 时,h(x)的单调增区间为 $(0,+\infty)$,没有减区间,

a > 2 时,h(x)的单调增区间为 $(0, \frac{1}{a})$, $(\frac{1}{2}, +\infty)$,单调减区间为 $(\frac{1}{a}, \frac{1}{2})$.

【解析】(1)根据切线相同,求出a,代入求出f(x)-g(x),再利用求导判断即可;

(2)令 $h(x) = f(x) - g(x) = ax^2 - (a+2)x + 2 + lnx$,定义域为 $(0, +\infty)$,求导并对 a 进行分类讨论,判断单调性即可.

本题考查了导数法求切线方程,导数法判断函数的单调性和极值,含参问题分类讨论思想的应用,中档题.

22. 【答案】解: (1)

因为 $f'(x) = \ln x + 2$

$$\diamondsuit f'(x) < 0$$
, $\theta < x < \frac{1}{e^2}$;

所以f(x)的递增区间为 $\left(\frac{1}{e^2}, +\infty\right)$,f(x)的递减区间为 $\left(0, \frac{1}{e^2}\right)$.

所以当 $x = \frac{1}{e^2}$ 时,函数取值极小值,

极小值为
$$f\left(\frac{1}{e^2}\right) = \frac{1}{e^2}\left(1 + \ln\frac{1}{e^2}\right) = -\frac{1}{e^2}$$
, 无极大值;

(2)由(1)知, $f(x) = x(1 + \ln x)$, 所以k(x - 1) < f(x)对任意x > 1恒成立,

即 $k < \frac{x + x \ln x}{x - 1}$ 对任意x > 1恒成立.

$$\diamondsuit g(x) = \frac{x + x \ln x}{x - 1},$$

则
$$g'(x) = \frac{x - \ln x - 2}{(x - 1)^2}$$
,

$$\diamondsuit h(x) = x - \ln x - 2(x > 1),$$

则
$$h'(x) = 1 - \frac{1}{x} = \frac{x-1}{x} > 0$$
,

所以函数h(x)在 $(1, + \infty)$ 上单调递增.

因为
$$h(3) = 1 - \ln 3 < 0$$
, $h(4) = 2 - 2\ln 2 > 0$,

所以方程h(x) = 0 在(1, + ∞)上存在唯一实根 $x_0 \in (3,4)$,

当 $1 < x < x_0$ 时,h(x) < 0,即g'(x) < 0,

当 $x > x_0$ 时,h(x) > 0,即g'(x) > 0,

所以函数 $g(x) = \frac{x + x \ln x}{x - 1}$ 在 $(1, x_0)$ 上单调递减,在 $(x_0, + \infty)$ 上单调递增.

所以[
$$g(x)$$
]_{min} = $g(x_0) = \frac{x_0(1 + \ln x_0)}{x_0 - 1} = \frac{x_0(1 + x_0 - 2)}{x_0 - 1} = x_0 \in (3,4)$.

所以 $k < [g(x_0)]_{\min} = x_0 \in (3,4).$ 故整数 k 的最大值是 3.

【解析】本题主要考查导数的几何意义,考查利用导数研究函数的单调性,极值,恒成立问题,属于较难题.

- (1)利用导数的几何意义即可求得函数f(x)的图象在x = 1处的切线方程;
- (2)求出函数的导数,令导函数大于零得出函数的增区间,导函数小于零得出函数的减区间,即可求得其极值;
- (3)由k(x-1) < f(x)对任意x > 1 恒成立,即 $k < \frac{x+x\ln x}{x-1}$ 对任意x > 1 恒成立.令 $g(x) = \frac{x+x\ln x}{x-1}$,只要求得其最小值即本题可解.求导得 $g'(x) = \frac{x-\ln x-2}{(x-1)^2}$,令 $h(x) = x-\ln x-2(x > 1)$ 易得存在唯一实根 $x_0 \in (3,4)$,使得当 $1 < x < x_0$ 时,即g'(x) < 0,当 $x > x_0$ 时,即g'(x) > 0,即可得 $[g(x)]_{\min} = g(x_0) = \frac{x_0(1+\ln x_0)}{x_0-1} = x_0 \in (3,4)$,从而得解.