授课时间: 9.2

江苏省仪征中学 2021—2022 学年度第一学期高二化学导学案 专题 1 化学反应与能量变化 第一单元 化学反应的热效应

第1课时 化学反应的焓变

7	24	ঘ	\Box	枟	1

1. 能辨识化学反应中的能量转化形式,能解释化学反应中能量变化的本质。

审核人: 李萍

- 2. 知道内能是体系内物质的各种能量的总和,受温度、压强、物质的聚集状态的影响。
- 3. 能用热化学方程式表示反应中的能量变化。

【学习过程】

导学:

知识梳理(阅读教材 P2-7)

研制人: 杨震

一、焓变 反应热

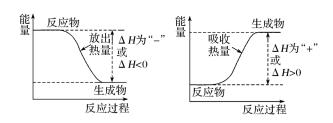
1. 反应热

在化学反应过程中,	当反应物和生成物具有相同	温度时,或	的热称为化学反应的	热效应,也称反应	Ź热。
说明:被研究的物质	f系统称为,	体系以外的其他部分	分称为	. 0	
2. 焓和焓变					
(1)焓是与物质	_有关的物理量。单位:	,符号 : _	0		
(2)焓变是生成物之炽	含与反应物之焓的差值。单位	<u>. </u>	符号:。		
3. 焓变与反应热					
在恒压的条件下	5,化学反应过程中吸收或释	放的热即为反应的炸	含变。		

4. 放热反应与吸热反应

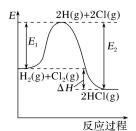
- (1)概念: ______热的反应称为吸热反应; _____热的反应称为放热反应。
- (2)ΔH 的正、负与吸热反应、放热反应
 - ①当 ΔH 为 "____" 或 ΔH ____0 时,为放热反应,反应体系能量_____。
 - ②当 ΔH 为 "____" 或 ΔH ____0 时,为吸热反应,反应体系能量
- 5. 化学反应中能量变化的原因
- (1)微观上

①化学反应的本质是_____。当反应物中的化学键_____时, 需要_____的相互作用,需要_____能量;当______时,即新化学键_____时,又要 能量。


② ΔH = 物的总键能一 物的总键能。

(2)宏观上

- ①生成物的总能量与反应物的总能量的相对大小,决定化学反应是吸热反应还是放热反应。
- ②ΔH=生成物总能量-反应物总能量。


6. 反应热的两种图示

(1)能量变化图示

(2)化学键变化图示	: (以 H ₂ (g)+Cl ₂ (g)=	$=2HCl(g)$ ΔH	=-186 kJ·mol ⁻¹ 为例)
------------	--	-----------------------	--------------------------------

E_1 :	;
<i>E</i> ₂ :	;
$\Lambda H =$	_

二、热化学方程式

1. 概念

能够表示的化学方程式叫做热化学方程式。

2. 表示意义

- (1)热化学方程式不仅表明了化学反应中的 变化,也表明了化学反应中的 变化。
- (2)热化学方程式中物质的化学计量数,表示实际参加反应的反应物的____和实际生成的生成物的
- (3)热化学方程式中的反应热与反应物、生成物的_____相对应。

3. 书写热化学方程式的注意事项

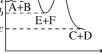
- (1)注明物质的_____;
- (2)标出对应的_____;
- (3)标明反应所处的 (常温常压时,可不注明)。

预习自测

- 1. 判断正误,正确的打"√",错误的打"×"。
 - (1)反应热是化学反应在一定条件下所释放或吸收的能量()
 - (2)反应热常用符号 ΔH 来表示,它的单位是 $kJ \cdot mol^{-1}$ ()
 - (3)放热反应生成物释放的总能量大于反应物吸收的总能量,反应体系的能量降低()
 - (4)放热反应的 ΔH >0,吸热反应的 ΔH <0()
 - (5)焓变就是化学反应的热效应()
 - (6)断裂化学键放出能量,形成化学键吸收能量()
- 2. 己知: $H_2(g) + F_2(g) = 2HF(g)$ $\Delta H = -270 \text{ kJ} \cdot \text{mol}^{-1}$,下列说法正确的是()
 - A. 2L氟化氢气体分解成1L氢气与1L氟气吸收270kJ热量
 - B. 1 mol 氢气与 1 mol 氟气反应生成 2 mol 液态氟化氢放出的热量小于 270 kJ
 - C. 在相同条件下, 1 mol 氢气与 1 mol 氟气的能量总和大于 2 mol 氟化氢气体的能量
 - D. 1个氢气分子与1个氟气分子反应生成2个氟化氢气体分子放出270kJ热量

导思:

- 一、两角度认识反应热
- 1. 从宏观和微观认识吸热反应和放热反应


	放热反应	吸热反应
定义		
宏观角度		
微观角度		

与键能的关系	
焓变	
图示	
能量变化	
常见	
反应	
类型	

- 2. 任何化学反应在发生物质变化的同时都伴随着能量变化。
- 3. 化学反应是吸热反应还是放热反应,与反应条件和反应类型没有直接的因果关系。常温下能进行的反应 也可能是吸热反应,高温条件下进行的反应也可能是放热反应。

导练:

- 1. 下列叙述正确的是()
 - A. 该图表示反应 A+B——C+D 的 $\Delta H = (a-c) \text{ kJ·mol}^{-1}$
 - B. 该图表示反应 A+B==E+F中,反应物断键吸收的总能量大于生成物成键放出的 总能量

`能量/(kJ・mol⁻¹)

- C. 反应: E+F---C+D 为放热反应
- D. E、F 是反应 A+B--C+D 的催化剂
- 2. 已知 H—H 键键能为 436 kJ·mol $^{-1}$,H—N 键键能为 391 kJ·mol $^{-1}$,根据化学方程式: $N_2(g) + 3H_2(g)$ 高温、高压 催化剂

 $2NH_3(g)$ $\Delta H = -92.4 \text{ kJ·mol}^{-1}$,则 $N \equiv N$ 键键能是()

A. 431 kJ·mol⁻¹

B. 945.6 kJ·mol⁻¹

C. $649 \text{ kJ} \cdot \text{mol}^{-1}$

- D. 869 kJ·mol⁻¹
- 3. 己知: $C(s)+H_2O(g)$ $CO(g)+H_2(g)$ $\Delta H=a kJ \cdot mol^{-1}$

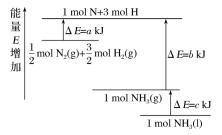
$$2C(s) + O_2(g) = 2CO(g)$$
 $\Delta H = -220 \text{ kJ} \cdot \text{mol}^{-1}$

H—H、O=O 和 O—H 键的键能分别为 436 kJ·mol⁻¹, 496 kJ·mol⁻¹ 和 462 kJ·mol⁻¹。则 *a* 为()

A. -332

B. -118

C. +350


D. +130

导思:

- 二、热化学方程式的书写及正误判断
- 1. 热化学方程式与普通化学方程式的区别
- 2. 书写热化学方程式的"五步"
- 3. 热化学方程式正误判断的"五看"

导练:

- 4. 依据事实,写出下列反应的热化学方程式。
- (1) 1 mol N₂(g)与适量 H₂(g)反应,生成 2 mol NH₃(g),放出 92.4 kJ 热量。
- (2) 1 mol Cu(s)与适量 O₂(g)反应,生成 CuO(s),放出 157 kJ 热量。
- (3) 23 g C₂H₆O(l)和一定量的氧气混合点燃,恰好完全反应,生成 CO₂(g)和 H₂O(l),放出 683.5 kJ的热量。
- 5. 在 25 $^{\circ}$ C、101 kPa 的条件下,1 g 液态甲醇燃烧生成 CO₂(g)和液态水时放热 22.68 kJ,下列热化学方程式正确的是()
 - A. $CH_3OH(1)+3/2O_2(g)=CO_2(g)+2H_2O(1)$ $\Delta H=725.76 \text{ kJ}\cdot\text{mol}^{-1}$
 - B. $2CH_3OH(l)+3O_2(g)=2CO_2(g)+4H_2O(l)$ $\Delta H = -1 \ 451.52 \ kJ \cdot mol^{-1}$
 - C. $2CH_3OH(1) + 3O_2(g) = 2CO_2(g) + 4H_2O(1)$ $\Delta H = -725.76 \text{ kJ} \cdot \text{mol}^{-1}$
 - D. $2CH_3OH(1)+3O_2(g)=2CO_2(g)+4H_2O(1)$ $\Delta H=1 451.52 \text{ kJ} \cdot \text{mol}^{-1}$
- 6. 化学反应 N_2+3H_2 \longrightarrow 2NH₃ 的能量变化如下图所示。

试写出 N₂(g)和 H₂(g)反应生成 NH₃(l)的热化学方程式:

导航:

化学反应的热效应

导悟:

【课后作业】

- 1. 整理完善:《导学案》"导学"知识梳理
- 2. 完成《专题1第一单元第1课时》课时作业