江苏省仪征中学 2021-2022 学年度第一学期高二物理学科导学案

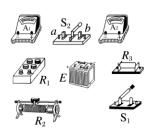
10 月学情检测复习课

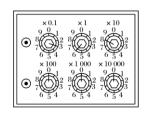
研制人:郭云松 审核人:殷仁勇

一、学习目标

- 1. 掌握部分电路中的基本规律,理解电表改装的基本原理;
- 2. 掌握闭合电路欧姆定律,并能应用其解决问题;
- 3. 会分析和解决电路中的能量问题;
- 4. 从实验的角度会测量电阻和电源的电动势和内阻;
- 5. 会使用动量定理分析和解决实际问题.

二、课前自学

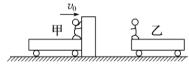

- 1. 电路简化, 部分电路欧姆定律, 电表改装、伏安法测电阻;
- 2. 闭合电路欧姆定律,闭合电路中的动态变化问题,含容电路问题:
- 3. 闭合电路功率问题, 非纯电阻功率;
- 4. 动量定理和动量守恒定律相关问题.


三、问题探究

例 1: 为了测定电流表 A_1 的内阻,采用如图所示的电路. 其中 A_1 是待测电流表,量程为 $300\mu A$,内阻约为 100Ω ; A_2 是标准电流表,量程是 $200\mu A$.

 R_1 是电阻箱,阻值范围 0~999.9 Ω ; R_2 是滑动变阻器; R_3 是保护电阻; E 是电池组,4V,内阻不计; S_1 是单刀单掷开关, S_2 是单刀双掷开关.

(1) 根据电路图,请在实物图中画出连线,将器材连接成实验电路.


(2) 连接好电路,	,将开关 S_2 扳到接点 a b		调整滑动变阻器R	R_2 使电流表 A_2 的读
数是 150μA; 然后	后将开关 S_2 扳到接点 b	处,保持 R2 不变	,调节电阻箱 R_1 ,	使 A ₂ 的读数仍为
150μA. 若此时电	阻箱各旋钮的位置如图所	f 示,电阻箱 R_1 的	阻值是Ω	,则待测电流表 A ₁
的内阻 R _g =	Ω.			

例 2: 如图所示电路中,当开关 S 闭合,滑动变阻器的滑片 P 从 a 端向 b 端滑动时,以下判断正确的是(

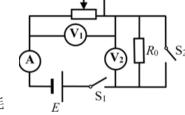
- A. 电压表示数变大,通过灯 L_1 的电流变大,灯 L_2 变亮
- B. 电压表示数变小,通过灯 L_1 的电流变小,灯 L_2 变暗
- C. 电压表示数变大,通过灯 L_2 的电流变小,灯 L_1 变亮
- D. 电压表示数变小,通过灯 L_2 的电流变大,灯 L_1 变暗

例 3: 在水平力 F=30 N 的作用下,质量 m=5 kg 的物体由静止开始沿水平面运动.已知物体与水平面间的动摩擦因数 μ =0.2,若 F 作用 6 s 后撤去,撤去 F 后物体还能向前运动多长时间才停止?(g 取 10 m/s²)

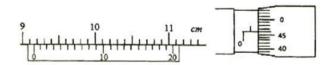
例 4: 如图所示,甲、乙两小孩各乘一辆冰车在光滑水平冰面上游戏,甲和冰车总质量为 30 kg,乙和冰车总质量也为 30 kg,游戏时甲推着一质量为 10 kg 的木箱,和他一起以 v_0 =3.5 m/s 的速度滑行,乙在甲的正前方相对地面静止,为避免碰撞,则甲至少以相对地面多大的速度将箱子推出才能避免与乙相撞?

四、课后小结

	I.
收获	2.
	3.
困惑	

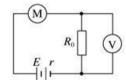

五、反馈练习(45分钟)

-1- 1-	1.1 /2	学号:	练习日期: 10 月 29 E
班级:	姓名:	至云•	44 21 日 41 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1
グエッス・	X / L .	-J ./ •	-m -1 H 2/1 - 1 U /1 4/2 F


- 1. 分别置于 a、b 两处的长直导线垂直纸面放置,通有大小相等的恒定电流,方向如图所示,
- a、b、c、d 在一条直线上,且 ac=cb=bd 已知 c 点的磁感应强度大小为 B_1 ,d 点的磁感应强度大小为 B_2 若将 b 处导线的电流切断,则
- A. 点的磁感应强度大小变为 $\frac{B_1}{2}$, 点的磁感应强度大小变为 $\frac{B_1}{2}$ B_2
- B. 点的磁感应强度大小变为 $\frac{B_1}{2}$, 点的磁感应强度大小变为 $\frac{B_2}{2} B_1$

g c p q

- C. 点的磁感应强度大小变为 B_1 - B_2 , 点的磁感应强度大小变为 $\frac{B_1}{2} B_2$
- D. 点的磁感应强度大小变为 B_1 - B_2 ,点的磁感应强度大小变为 $\frac{B_2}{2}$ $-B_1$
- 2. 如图所示电路中,电源内阻忽略不计, R_0 为定值电阻, R_m 为滑动变阻器 R 的最大阻值,且有 $R_0 > R_m$; 开关 S_1 闭合后,理想电流表 A 的示数为 I,理想电压表 V_1 、 V_2 的示数分别为 U_I 、 U_2 ,其变化量的绝对值分别为 ΔI 、 ΔU_I 、 ΔU_2 . 则下列说法正确的是
- A. 断开开关 S_2 ,将 R 的滑动触片向右移动,则电流 A 示数变小、电压表 V_2 示数变大
- B. 保持 R 的滑动触片不动,闭合开关 S_2 ,则电流表 A 示数变大、电压表 V_1 示数变小



- C. 断开开关 S_2 ,将 R 的滑动触片向右移动,则滑动变阻器消耗的电功率减小
- D. 断开开关 S_2 ,将 R 的滑动触片向右移动,则有 $\frac{\Delta\,U1}{\Delta\,I} = \frac{\Delta\,U2}{\Delta\,I}$
- 3. 一研究小组为测定某种金属的电阻率,截取了一段长为L的该种材料导线截面为圆形,用游标卡尺测得其长度L如图,则其长度L=mm,用螺旋测微器测得其直径D=mm.

请从下面给定的器材中选出适当的元件,设计一个电路,测出该段材料的电阻(约为600Ω),要求便于操作,方法简捷,要尽可能提高测量的精度.

- A、电源 E,电动势为 6V,内阻不计;
- B、电流表 A, 量程 10 mA, 内阻约为 0.5Ω ;
- C、电流表 A, 量程 50 mA, 内阻约为 0.1Ω :
- D、电压表 V, 量程 6V, 内阻约 $1k\Omega$;
- E、电压表 V, 量程 10V, 内阻约 1500Ω;
- F、滑动变阻器 R, 全阻值 5Ω , 额定电流为 0.5A:
- G、滑动变阻器 R, 全阻值 1000 Ω , 额定电流为 50 mA;
- H、开关及导线若干.
- (1)测量电路中电流表应选____,电压表应选____,滑动变阻器应选_____(填代号);
- (2) 在该实验中,滑动变阻器应选择的连接方式为_____(选填"限流式""分压式"),电流表的连接方式为_____(选填"外接""内接");
- (3) 若测出的电阻用 表示,那么该合金材料的电阻率 (用字母 R、D、L 表示);
- (4) 由于电流表内阻不可忽略,所以 $R_{x_{ij}}$ $R_{x_{ij}}$ (选填"大于""小于""等于").
- 4. 如图所示,电源的电动势是 6V,内阻是 0.5Ω ,小电动机 M 的线圈电阻为 0.5Ω ,限流电阻 R_0 为 3Ω ,若理想电压表的示数为 3V ,试求:
- (1) 电源的功率和电源的输出功率:
- (2) 电动机消耗的功率和电动机输出的机械功率.

- 5. 质量为 0.2 kg 的小球以 6 m/s、竖直向下的速度落至水平地面上,再以 4 m/s 的速度反向弹回. 取竖直向上为正方向,g 取 10 m/s^2 .
- (1) 求小球与地面碰撞前后动量的变化量;
- (2) 若小球与地面的作用时间为 0.2 s, 求小球受到地面的平均作用力大小.