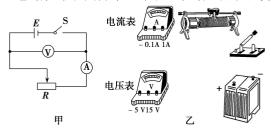
内容: 第二章章末复习 授课时间: 9.18

第二章 直流电路 章末复习2(电学实验)

【课前导学】


- 1、实验:测量电源的电动势和内阻
- 2、实验: 描绘小灯泡的伏安特性曲线

【课堂突破】

- 一、实验:测量电源的电动势和内阻
- 1. 仪器选择和电路连接
- (1) 仪器选择的基本思路及电路连接的注意事项
- (2) 巩固习题

[例 1] 测量电源的电动势及内阻的实验电路如图甲所示,图乙中给出的器材

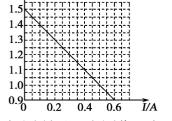
有: 待测的电源(电动势约为4V, 内阻 约为 2Ω), 电压表(内阻很大, 有 5 V、 15 V 两个量程), 电流表(内阻不计, 有 0.1 A、1 A 两个量程), 滑动变阻器(阻 值范围 $0\sim10\,\Omega$), 开关, 导线若干. 试 按照图甲中的电路在图7.中画出连线, 将器材连接成实验电路(要求正确选择

电表量程,以保证仪器的安全并使测量有尽可能高的精确度).

1. 实验设计与数据处理

- (1) 数据处理的常用方法
- (2) 巩固习题

[例 2] 在"用电流表和电压表测定电池的电动势和内阻"的实验中.


(1)备有如下器材:

A. 干电池 1 节 B. 滑动变阻器 $(0\sim20\,\Omega)$ C. 滑动变阻器 $(0\sim1\,k\Omega)$ D. 电 压表 $(0\sim3 \text{ V})$ E. 电流表 $(0\sim0.6 \text{ A})$ F. 电流表 $(0\sim3 \text{ A})$ G. 开关、导线若 干

其中滑动变阻器应选, 电流表应选. (只填器材前的序号)

(2)为了最大限度地减小实验误差,请在虑线框中画出该实验最合理的电路图.

势为 V,内阻为 Ω .

(3)某同学根据实验数据画出的 U - I 图像如图所示,由图像可得电池的电动

二、实验:描绘小灯泡的伏安特性曲线

1. 实验原理及器材的选取

- (1) 选择仪器的一般步骤 ______
- (2) 巩固习题

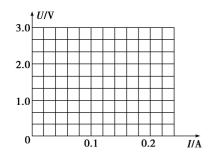
[例 1] 有一个小灯泡标有"6 V 0.6 W"的字样,现在要用伏安法描绘这个小灯泡的 I-U 图线,有下列器材可供选用:

- A. 电压表(0~5 V, 内阻 $10 \text{ k}\Omega$)
- B. 电压表(0~10 V, 内阻 20 kΩ)
- C. 电流表(0~0.3 A, 内阻 1 Ω)
- D. 电流表(0~0.6 A, 内阻 0.4 Ω)
- E. 滑动变阻器(30 Ω, 2 A)
- F. 学生电源(直流 9 V), 还有开关和导线
- (1)实验中电压表应选_____, 电流表应选____. (用序号字母表示)
- (2)为使实验误差尽可能减小,画出符合要求的实验电路图.

2. 实验数据的处理

- (1) 实验数据的处理方法 ______
- (2) 巩固习题

[例 2] 某同学在做"测绘小灯泡的伏安特性曲线"的实验中,得到如表所示的一组数据:


序号	1	2	3	4	5	6	7	8
U/V	0.20	0.60	1.00	1.40	1.80	2.20	2.60	3.00
I/A	0.020	0.060	0.100	0.140	0.170	0.190	0.200	0.205
灯泡发 光情况	不亮	微亮	较亮	正常发 光				

(1)试在坐标系上画出 *U-I* 图线, 当 *U*<1.40 V 时,

灯丝电压与电流成______比,灯丝电阻 , 当 U>1.40 V 时,灯丝的温度逐渐升

高,其电阻随温度的升高而_____

- (2)从图线上可以看出,当小灯泡两端的电压逐渐增大时灯丝电阻的变化是_____.
- (3)实验结果表明,导体的电阻随温度的升高而

【课后巩固】周末练习二