- 二、中档题:
- 1. [2010 全国新课标(理)T9]若 $\cos \alpha = -\frac{4}{5}$, α 是第三象限的角,则 $\frac{1+tan\frac{\alpha}{2}}{1-tan\frac{\alpha}{2}} = ($)
 - A. $-\frac{1}{2}$ B. $\frac{1}{2}$
- C. 2
- D. 2

【解答】解: 由 $\cos \alpha = -\frac{4}{5}$, α 是第三象限的角,

∴可得
$$sin\alpha = -\frac{3}{5}$$
,

$$\text{II}\frac{1+tan\frac{\alpha}{2}}{1-tan\frac{\alpha}{2}}=\frac{cos\frac{\alpha}{2}+sin\frac{\alpha}{2}}{cos\frac{\alpha}{2}-sin\frac{\alpha}{2}}=\frac{1+sin\alpha}{cos\alpha}=\frac{1-\frac{3}{5}}{-\frac{4}{5}}=-\frac{1}{2},$$

故选: A.

- 2. [2011 全国新课标(文) T7(理) T 5]已知角 θ 的顶点与原点重合,始边与x轴的正半轴 重合,终边在直线 y=2x上,则 $\cos 2\theta=($
 - A. $-\frac{4}{5}$ B. $-\frac{3}{5}$ C. $\frac{3}{5}$ D. $\frac{4}{5}$

【解答】解:根据题意可知: $\tan \theta = 2$,

所以
$$\cos^2 \theta = \frac{1}{\sec^2 \theta} = \frac{1}{\tan^2 \theta + 1} = \frac{1}{5}$$
,

则
$$\cos 2\theta = 2\cos^2 \theta - 1 = 2 \times \frac{1}{5} - 1 = -\frac{3}{5}$$
.

故选: B.

- 3. [2011 全国新课标(理)T11]设函数 $f(x) = \sin(\omega x + \varphi) + \cos(\omega x + \varphi)(\omega > 0, |\varphi| < \frac{\pi}{2})$ 的最小 正周期为 π ,且f(-x)=f(x),则(
 - A. f(x)在 $(0,\frac{\pi}{2})$ 单调递减
- B. f(x) 在($\frac{\pi}{4}$, $\frac{3\pi}{4}$) 单调递减
- C. f(x)在 $(0,\frac{\pi}{2})$ 单调递增
- D. f(x) 在($\frac{\pi}{4}$, $\frac{3\pi}{4}$) 单调递增

【解答】解: 由于 $f(x) = \sin(\omega x + \phi) + \cos(\omega x + \phi) = \sqrt{2}\sin(\omega x + \phi + \frac{\pi}{4})$,

由于该函数的最小正周期为 $T = \frac{2\pi}{\omega}$, 得出 $\omega = 2$,

又根据 f(-x) = f(x), 得 $\varphi + \frac{\pi}{4} = \frac{\pi}{2} + k\pi(k \in \mathbb{Z})$, 以及 $|\varphi| < \frac{\pi}{2}$, 得出 $\varphi = \frac{\pi}{4}$.

因此, $f(x) = \sqrt{2}\sin(2x + \frac{\pi}{2}) = \sqrt{2}\cos 2x$,

若 $x \in (0, \frac{\pi}{2})$, 则 $2x \in (0, \pi)$, 从而 f(x) 在 $(0, \frac{\pi}{2})$ 单调递减,

若
$$x \in (\frac{\pi}{4}, \frac{3\pi}{4})$$
,则 $2x \in (\frac{\pi}{2}, \frac{3\pi}{2})$,

该区间不为余弦函数的单调区间,故B,C,D都错,A正确.

故选: A.

- 4. [2011 全国新课标(文)T11]设函数 $f(x) = \sin(2x + \frac{\pi}{4}) + \cos(2x + \frac{\pi}{4})$,则(
 - A. y = f(x) 在 $(0, \frac{\pi}{2})$ 单调递增,其图象关于直线 $x = \frac{\pi}{4}$ 对称
 - B. y = f(x) 在 $(0, \frac{\pi}{2})$ 单调递增,其图象关于直线 $x = \frac{\pi}{2}$ 对称
 - C. y = f(x) 在 $(0, \frac{\pi}{2})$ 单调递减,其图象关于直线 $x = \frac{\pi}{4}$ 对称
 - D. y = f(x) 在 $(0, \frac{\pi}{2})$ 单调递减,其图象关于直线 $x = \frac{\pi}{2}$ 对称

【解答】解: 因为 $f(x) = \sin(2x + \frac{\pi}{4}) + \cos(2x + \frac{\pi}{4}) = \sqrt{2}\sin(2x + \frac{\pi}{2}) = \sqrt{2}\cos 2x$. 由于 $y = \cos 2x$ 的对称轴为 $x = \frac{1}{2}k\pi(k \in \mathbb{Z})$,所以 $y = \sqrt{2}\cos 2x$ 的对称轴方程是: $x = \frac{k\pi}{2}(k \in \mathbb{Z})$,所以A, C错误; $y = \sqrt{2}\cos 2x$ 的单调递减区间为 $2k\pi$ 發 $x \pi + 2k\pi(k \in Z)$, 即 $k\pi$ 發 $x \pi + k\pi(k \in Z)$, 函数 y = f(x) 在 $(0, \frac{\pi}{2})$ 单调递减,所以 B 错误, D 正确.

故选: D.

5 . [2012 全国新课标(理)T9]已知 $\omega > 0$,函数 $f(x) = \sin(\omega x + \frac{\pi}{4})$ 在 $(\frac{\pi}{2}, \pi)$ 上单调递减. 则ω的取值范围是

A.
$$\left[\frac{1}{2}, \frac{5}{4}\right]$$
 B. $\left[\frac{1}{2}, \frac{3}{4}\right]$ C. $\left(0, \frac{1}{2}\right]$

B.
$$\left[\frac{1}{2}, \frac{3}{4}\right]$$

C.
$$(0,\frac{1}{2}]$$

D.
$$(0,2]$$

【答案】 A

【解析】
$$\omega = 2 \Rightarrow (\omega x + \frac{\pi}{4}) \in [\frac{5\pi}{4}, \frac{9\pi}{4}]$$
 不合题意 排除(D)
$$\omega = 1 \Rightarrow (\omega x + \frac{\pi}{4}) \in [\frac{3\pi}{4}, \frac{5\pi}{4}]$$
 合题意 排除(B)(C)
$$\Re: \omega(\pi - \frac{\pi}{2}) \le \pi \Leftrightarrow \omega \le 2, (\omega x + \frac{\pi}{4}) \in [\frac{\pi}{2}\omega + \frac{\pi}{4}, \pi\omega + \frac{\pi}{4}] \subset [\frac{\pi}{2}, \frac{3\pi}{2}]$$

$$\Re: \frac{\pi}{2}\omega + \frac{\pi}{4} \ge \frac{\pi}{2}, \pi\omega + \frac{\pi}{4} \le \frac{3\pi}{2} \Leftrightarrow \frac{1}{2} \le \omega \le \frac{5\pi}{4}$$

6. [2012 全国大纲(理)T7]已知 α 为第二象限角, $\sin \alpha + \cos \alpha = \frac{\sqrt{3}}{2}$,则 $\cos 2\alpha =$ A. $-\frac{\sqrt{5}}{2}$ B. $-\frac{\sqrt{5}}{9}$ C. $\frac{\sqrt{5}}{9}$ D. $\frac{\sqrt{5}}{2}$ 【答案】A 【解析】 解法一: $\sin \alpha + \cos \alpha = \frac{\sqrt{3}}{3}$,两边平方可得 $1 + \sin 2\alpha = \frac{1}{3} \Rightarrow \sin 2\alpha = -\frac{2}{3}$ $:: \alpha$ 是第二象限角,因此 $\sin \alpha > 0$, $\cos \alpha < 0$, 所以 $\cos \alpha - \sin \alpha = -\sqrt{(\cos \alpha - \sin \alpha)^2} = -\sqrt{1 + \frac{2}{3}} = -\frac{\sqrt{15}}{3}$ $\therefore \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = (\cos \alpha + \sin \alpha)(\cos \alpha - \sin \alpha) = -\frac{\sqrt{5}}{2}$ 解法二:单位圆中函数线+估算,因为 α 是第二象限的角,又 $\sin \alpha + \cos \alpha = \frac{1}{6} > \frac{1}{2}$ 所以"正弦线"要比"余弦线"长一半多点,如图,故 $\cos 2\alpha$ 的"余弦线"应选A. 7. [2014 全国**新课标 II** 卷(理)-T04]钝角三角形 ABC 的面积是 $\frac{1}{2}$, AB = 1 , $BC = \sqrt{2}$, 则 AC = (【解答】解: : 钝角三角形 ABC 的面积是 $\frac{1}{2}$, AB=c=1 , $BC=a=\sqrt{2}$, $\therefore S = \frac{1}{2}ac\sin B = \frac{1}{2}, \quad \text{III} \sin B = \frac{\sqrt{2}}{2},$ 当 B 为钝角时, $\cos B = -\sqrt{1 - \sin^2 B} = -\frac{\sqrt{2}}{2}$, 利用余弦定理得: $AC^2 = AB^2 + BC^2 - 2AB \cdot BC \cdot \cos B = 1 + 2 + 2 = 5$, 即 $AC = \sqrt{5}$, 当 B 为锐角时, $\cos B = \sqrt{1 - \sin^2 B} = \frac{\sqrt{2}}{2}$, 利用余弦定理得: $AC^2 = AB^2 + BC^2 - 2AB \cdot BC \cdot \cos B = 1 + 2 - 2 = 1$, 即 AC = 1, 此时 $AB^2 + AC^2 = BC^2$, 即 $\triangle ABC$ 为直角三角形,不合题意,舍去, 则 $AC = \sqrt{5}$. 故选: B. 8. [2018 全国 II 卷(理)-T10]若 $f(x) = \cos x - \sin x$ 在[-a, a] 是减函数,则 a 的最大值是() A. $\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $\frac{3\pi}{4}$ D. π

【解答】解: $f(x) = \cos x - \sin x = -(\sin x - \cos x) = -\sqrt{2}\sin(x - \frac{\pi}{4})$,

得
$$-\frac{\pi}{4}+2k\pi$$
烈 $k=\frac{3}{4}\pi+2k\pi$, $k\in Z$,

取 k=0, 得 f(x) 的一个减区间为 $\left[-\frac{\pi}{4}, \frac{3}{4}\pi\right]$,

由 f(x) 在 [-a, a] 是减函数,

得
$$\left\{ \begin{array}{ll} -a...-\frac{\pi}{4} \\ a,, \frac{3\pi}{4} \end{array} \right.$$
 , $\therefore a,, \frac{\pi}{4}$.

则 a 的最大值是 $\frac{\pi}{4}$.

故选: A.

- 9. [2018 全国 I 卷(文)-T08]已知函数 $f(x) = 2\cos^2 x \sin^2 x + 2$,则()
 - A. f(x) 的最小正周期为 π ,最大值为3
 - B. f(x) 的最小正周期为 π ,最大值为4
 - C. f(x) 的最小正周期为 2π ,最大值为3
 - D. f(x) 的最小正周期为 2π , 最大值为 4

【解答】解: 函数 $f(x) = 2\cos^2 x - \sin^2 x + 2$

$$=2\cos^2 x - \sin^2 x + 2\sin^2 x + 2\cos^2 x$$

$$= 4\cos^2 x + \sin^2 x$$

$$=3\cos^2 x+1$$

$$=3\bullet\frac{\cos 2x+1}{2}+1$$

$$=\frac{3\cos 2x}{2}+\frac{5}{2},$$

故函数的最小正周期为 π ,

函数的最大值为 $\frac{3}{2} + \frac{5}{2} = 4$,

故选: B.

10. **[2018 全国 I 卷(文)-T11]**已知角 α 的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且 $\cos 2\alpha = \frac{2}{3}$,则|a-b|=()

A.
$$\frac{1}{5}$$

B.
$$\frac{\sqrt{5}}{5}$$

B.
$$\frac{\sqrt{5}}{5}$$
 C. $\frac{2\sqrt{5}}{5}$

D. 1

【解答】解::角 α 的顶点为坐标原点,始边与x轴的非负半轴重合,

终边上有两点 A(1,a), B(2,b), 且 $\cos 2\alpha = \frac{2}{3}$,

$$\therefore \cos 2\alpha = 2\cos^2 \alpha - 1 = \frac{2}{3}, \quad \text{mightain} \cos^2 \alpha = \frac{5}{6},$$

$$\therefore |\cos\alpha| = \frac{\sqrt{30}}{6}, \quad \therefore |\sin\alpha| = \sqrt{1 - \frac{30}{36}} = \frac{\sqrt{6}}{6},$$

$$|\tan \alpha| = \frac{b-a}{2-1} = |a-b| = \frac{|\sin \alpha|}{|\cos \alpha|} = \frac{\frac{\sqrt{6}}{6}}{\frac{\sqrt{30}}{6}} = \frac{\sqrt{5}}{5}.$$

故选: B.