高三数学

注 意 事 项

考生在答题前请认真阅读本注意事项及各题答题要求.

- 1. 本试卷共 4 页,包含选择题(第 1 题~第 12 题,共 12 题)和非选择题(第 13 题~第22题,共10题)两部分.本卷满分150分,考试时间120分钟.考试结 束后,请将本试卷和答题卡一并交回.
- 2. 答题前,请务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试 卷及答题卡的规定位置.
- 3. 请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相
- 4. 作答选择题(第1题~第12题),必须用2B铅笔将答题卡上对应选项的方框涂 满、涂黑; 如需改动, 请用橡皮擦干净后, 再选涂其他答案. 作答非选择题, 必 须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答, 在其他位置作答一 律无效.
- 5. 如需作图, 须用 2B 铅笔绘、写清楚, 线条、符号等须加黑、加粗.
- 一、选择题: 本题共 8 小题, 每小题 5 分, 共 40 分。在每小题给出的四个选项中, 只有一项是符合 题目要求的。
- 1. 己知 i 为虚数单位,复数 $z = \frac{1-3i}{3+i}$,则 |z| =
 - A. 1
- B. 2 C. $2\sqrt{2}$ D. $\sqrt{10}$
- - A. $A \bigcup B = R$ B. $B \subseteq A$ C. $A \cap B = \emptyset$ D. $A \cup B = B$

- 3. 已知 $\sin\left(\alpha \frac{\pi}{4}\right) = \frac{3}{5}$,且 α 为锐角,则 $\cos 2\alpha =$

A.	$-\frac{12}{25}$	B. $\frac{12}{25}$	C. $-\frac{24}{25}$	D. $\frac{24}{25}$
	25	25	25	25

4. 著名物理学家李政道说: "科学和艺术是不可分割的"。音乐中使用的乐音在高度上不是任意定 的,它们是按照严格的数学方法确定的.我国明代的数学家、音乐理论家朱载填创立了十二平均 律是第一个利用数学使音律公式化的人.十二平均律的生律法是精确规定八度的比例,把 八度分成 13 个半音,使相邻两个半音之间的频率比是常数,如下表所示,其中 $a_1,a_2,...,a_{13}$ 表示 这些半音的频率,它们满足 $\log_2\left(\frac{a_{i+1}}{a_i}\right)^{12}=1$ $\left(i=1,2,...,12\right)$.若某一半音与 D^* 的频率之比为 $\sqrt[3]{2}$,

则该半音为

频率	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	a_{11}	a_{12}	a_{13}
半音	С	C*	D	$D^{^{\#}}$	Е	F	$F^{\#}$	G	$G^{^{\#}}$	A	$A^{\#}$	В	C(八度)
Α.	$F^{\#}$		В. С	F		С	· G*			D. A			

5. 已知双曲线 C: $\frac{x^2}{3}-y^2=1$, O 为坐标原点,F 为 C 的右焦点,过 F 的直线与 C 的两条渐近线的 交点分别为M,N. 若 $\triangle OMN$ 为直角三角形,则|MN|等于

A. $\frac{3}{2}$

B. 3 C. $2\sqrt{3}$ D. 4

6. 已知向量 \vec{a} , \vec{b} 满足 $|\vec{a}| = |\vec{b}| = 1$, $\vec{a} \perp \vec{b}$, 若 $\sqrt{2}\vec{a} + \vec{b}$ 与 $x\vec{a} + \vec{b}$ 的夹角为 45° ,则实数x =

A. $\sqrt{2}-1$ B. $\sqrt{2}+1$ C. $3-2\sqrt{2}$ D. $-3-2\sqrt{2}$

7. 2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主 题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为"鸿福齐天"、"国 富民强"、"兴国之路",为了弄清"国富民强"这一作品是谁制作的,村支书对三人进行了问 话,得到回复如下:

小明说:"鸿福齐天"是我制作的:

小红说: "国富民强"不是小明制作的, 就是我制作的;

小金说: "兴国之路"不是我制作的.

若三人的说法有且仅有一人是正确的,则"鸿福齐天"的制作者是

A. 小明 B. 小红

C. 小金

D. 小金或小明

8. 已知函数 $f(x) = \begin{cases} 2^x - 1, & x \le 0, \\ -x^2 - 3x, & x > 0, \end{cases}$ 若不等式 $|f(x)| \ge mx - 2$ 恒成立,则实数 m 的取值范围为

A.
$$[3-2\sqrt{2}, 3+2\sqrt{2}]$$

B.
$$[0, 3-2\sqrt{2}]$$

C.
$$(3-2\sqrt{2}, 3+2\sqrt{2})$$

D.
$$[0, 3+2\sqrt{2}]$$

- 二、选择题: 本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的选项中,有多项符合题目要求。全部选对的得 5 分,有选错的得 0 分,部分选对的得 3 分。
- 9. 设正实数a, b满足a+b=1,则

A.
$$\frac{1}{a} + \frac{1}{b}$$
 有最小值 4

B.
$$\sqrt{ab}$$
 有最小值 $\frac{1}{2}$

C.
$$\sqrt{a} + \sqrt{b}$$
 有最大值 1

D.
$$a^2 + b^2$$
 有最小值 $\frac{1}{2}$

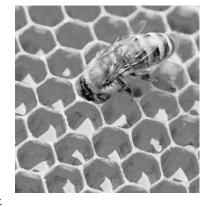
10. 古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点 A、 B 的距离之比为定值 λ ($\lambda \neq 1$)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系 xOy 中,A(-2,0)、B(4,0),点 P

满足 $\frac{PA}{PB} = \frac{1}{2}$, 设点 P 所构成的曲线为 C,下列结论正确的是

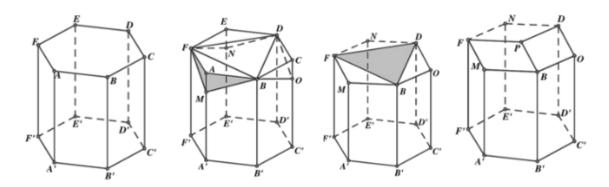
A.
$$C$$
的方程为 $(x+4)^2 + y^2 = 16$

- B. 在C上存在点D, 使得D到点(1,1)的距离为 3
- C. 在C上存在点M, 使得|MO|=2|MA|
- D. 在C上存在点N,使得 $\left|NO\right|^2 + \left|NA\right|^2 = 4$
- 11. 已知甲罐中有四个相同的小球,标号为 1,2,3,4;乙罐中有五个相同的小球,标号为 1,2,3,5,6,现从甲罐、乙罐中分别随机抽取 1 个小球,记事件 A= "抽取的两个小球标号之和大于 5",事件 B= "抽取的两个小球标号之积大于 8",则
 - A. 事件 A 发生的概率为 $\frac{1}{2}$
 - B. 事件 $A \cup B$ 发生的概率为 $\frac{11}{20}$
 - C. 事件 $A \cap B$ 发生的概率为 $\frac{2}{5}$
 - D. 从甲罐中抽到标号为 2 的小球的概率为 $\frac{1}{5}$

- 12. 设函数 $f(x) = x \ln x$, $g(x) = \frac{f'(x)}{x}$, 给定下列命题, 正确的是
 - A. 不等式 g(x) > 0 的解集为 $\left(\frac{1}{e}, +\infty\right)$;
 - B. 函数 g(x)在(0,e)单调递增,在 $(e,+\infty)$ 单调递减;
 - C. 若 $x_1 > x_2 > 0$ 时, 总有 $\frac{m}{2}(x_1^2 x_2^2) > f(x_1) f(x_2)$ 恒成立, 则 $m \ge 1$;
 - D. 若函数 $F(x) = f(x) ax^2$ 有两个极值点,则实数 $a \in (0,1)$.
- 三、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分。
- 13. 命题 " $\forall x \in [0,+\infty)$, $x^3 + x \ge 0$ "的否定是_____.
- 14. $(2x-1)^5 + (x+2)^4 = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$, $y = a_0 + a_2 + a_4 =$ ______.
- 16. 蜂巢是由工蜂分泌蜂蜡建成的从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是109°28′,这样的设计含有深刻的数学原理、我国著名数学家华罗庚曾专门研究蜂巢的结构著有《谈谈与蜂房结构有关的数学问题》. 用数学的眼光去看蜂巢的结构,如图,在六棱柱 **ABCDEF-**A'B'C'D'E'**的三个顶点**A, C, E处分别用平



面 BFM,平面 BDO,平面 DFN 截掉三个相等的三棱锥 M-ABF , O-BCD , N-DEF , 平面 BFM,平面 BDO ,平面 DFN 交于点 P,就形成了蜂巢的结构 .



如图,设平面 PBOD 与正六边形底面所成的二面角的大小为 θ ,则 $\cos\theta$ = _____. (用含 $\tan 54^{\circ}44'$ 的代数式表示)

四、解答题: 本题共 6 小题, 共 70 分。解答应写出文字说明、证明过程或演算步骤

17. (本小题满分10分)

在① $3a_2+b_2+b_4=0$,② $a_4=b_4$,③ $S_3=-27$ 这三个条件中任选一个,补充在下面问题中,若问题中的 λ 存在,求实数 λ 的取值范围;若问题中的 λ 不存在,请说明理由.

设等差数列 $\{a_n\}$ 的前n项和为 S_n ,数列 $\{b_n\}$ 的前n项和为 T_n , _______, $a_5=b_1$, $4T_n=3b_n-1~(n\in {\hbox{\bf N}}^*)$,是否存在实数 λ ,对任意 $n\in {\hbox{\bf N}}^*$ 都有 $\lambda \leq S_n$?

注:如果选择多个条件分别解答,按第一个解答计分.

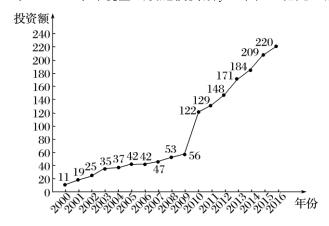
18. (本小题满分12分)

已知函数 $f(x) = \sin^2 x - \cos^2 x + 2\sqrt{3}\sin x \cos x (x \in \mathbf{R})$.

- (1) 求 f(x) 的对称轴和单调区间;
- (2) 在 $\triangle ABC$ 中,角 A , B , C 的对边为 a , b , c , 若 f(A) 之 , c=5 , $\cos B=\frac{1}{7}$, 求 $\triangle ABC$ 中线 AD 的长.

19. (本小题满分12分)

下图是某地区 2000 年至 2016 年环境基础设施投资额 y (单位: 亿元)的折线图.

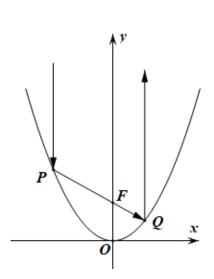


为了预测该地区 2018 年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据 2000 年至 2016 年的数据(时间变量t的值依次为 1,2,…,17)建立模型①. $\hat{y}=-30.4+13.5t$;根据 2010 年至 2016 年的数据(时间变量t 的值依次为 1,2,…,7)建立模型②: $\hat{y}=99+17.5t$.

- (1) 分别利用这两个模型, 求该地区 2018 年的环境基础设施投资额的预测值;
- (2) 你认为用哪个模型得到的预测值更可靠?并说明理由.

20. (本小题满分12分)

光学是当今科技的前沿和最活跃的领域之一,抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出,今有抛物线 $C: x^2 = 2py(p>0)$,一平行于y轴的光线从上方射向抛物线上的点P,经抛物线2次反射后,又沿平行于y轴方向射出,若两平行光线间的最小距



离为8.

- (1) 求抛物线C的方程;
- (2) 若直线 l: y=x+m 与抛物线 C 交于 A , B 两点,以点 A 为顶点作 $\triangle ABN$,使 $\triangle ABN$ 的外接圆圆心T 的坐标为 $\left(3,\frac{49}{8}\right)$,求弦 AB 的长度.
- 21. (本小题满分12分)

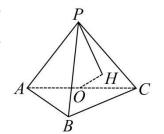
已知函数
$$f(x) = \ln x - \frac{1}{2}ax^2 + 1$$
.

- (1) 讨论函数f(x)的单调性;
- (2) 当a=1时,设函数f(x)的两个零点为 x_1 , x_2 ,试证明: $x_1+x_2>2$.

22. (本小题满分12分)

在①OH//平面 PAB, ②平面 PAB 上平面 OHC, ③OH 上PC 这三个条件中任选一个,补充在下面的问题中,并解决该问题.

问题:如图,在三棱锥 P-ABC 中,平面 PAC 上平面 ABC, $\triangle ABC$ 是以 AC 为斜边的等腰直角三角形,AC=16,PA=PC=10,O 为 AC 中点,H 为 $\triangle PBC$ 内的动点(含边界).



- (1) 求点 O 到平面 PBC 的距离;
- (2) 若_____, 求直线 PH 与平面 ABC 所成角的正弦值的取值范围.
- 注: 若选择多个条件分别解答, 按第一个解答计分.

^{徐州一中} 2021 届两校联合第二次适应性考试

高三数学试题参考答案

- 一、选择题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. A 2. D 3. C 4. B 5. B 6. C 7. B 8. D
- 二、选择题:本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的选项中,有多项符合题目要求。全部选对的得 5 分,有选错的得 0 分,部分选对的得 3 分。
- 9. AD
- 10. ABD
- 11. BC
- 12. AC
- 三、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分。
- 13. $\exists x_0 \in [0, +\infty) . x_0^3 + x_0 < 0$
- 14. -80
- 15. $\frac{\sqrt{2}}{2}$ 1

- 16. $\frac{\sqrt{3}}{3} \tan 54^{\circ}44'$
- 四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。
- 17. (本小题满分 10 分)

设等差数列 $\{a_n\}$ 的公差为d,

得 $b_1 = -1$,

从而 $a_5 = -1$,

当 $n \ge 2$ 时, $4b_n = 4T_n - 4T_{n-1} = (3b_n - 1) - (3b_{n-1} - 1) = 3b_n - 3b_{n-1}$,

得 $b_n = -3b_{n-1}$,

所以数列 $\{b_n\}$ 是首项为-1,公比为-3的等比数列,

所以 $b_n = -(-3)^{n-1}$,

由对任意 $n \in \mathbb{N}^*$,都有 $\lambda \leq S_n$,

可知等差数列 $\{a_n\}$ 的前n项和 S_n 存在最小值,

假设
$$n=k$$
时, S_n 取最小值,所以 $\begin{cases} S_{k-1} \geq S_k \\ S_k \leq S_{k+1} \end{cases} \Leftrightarrow \begin{cases} a_k \leq 0 \\ a_{k+1} \geq 0 \end{cases}$

(1) 若补充条件是① $3a_2 + b_2 + b_4 = 0$,

因为 $b_2 = 3$, $b_4 = 27$,

从而
$$a_2 = -\frac{1}{3}(b_2 + b_4) = -10$$
,

曲 $a_5 = a_2 + 3d$ 得 d = 3,

所以
$$a_n = a_1 + (n-1)d = a_2 + (n-2)d = -10 + 3(n-2) = 3n-16$$
,

由等差数列 $\{a_n\}$ 的前n项和 S_n 存在最小值,

又 $k \in \mathbb{N}^*$, 所以k = 5, 所以 $\lambda \le S_5 = -35$, 故实数 λ 的取值范围为 $\left(-\infty, -35\right]$.

(2) 若补充条件是② $a_4 = b_4$,

$$\pm b_4 = 27$$
, $\oplus a_4 = 27$, $\nabla a_5 = b_1 = -1$,

所以
$$d = a_5 - a_4 = -1 - 27 = -28$$
;

所以
$$a_n = a_1 + (n-1)d = a_5 + (n-5)d = -1 - 28(n-5) = -28n + 139$$
,

由等差数列 $\{a_n\}$ 的前n项和 S_n 存在最小值,

则
$$\left\{ -28k + 139 \le 0 \\ -28(k+1) + 139 \ge 0 \right\}$$
 , 得 $\left\{ k \ge \frac{139}{28} \\ k \le \frac{111}{28} \right\}$

所以 $k \in \emptyset$,

所以不存在 k,使得 S_n 取最小值,

故实数λ不存在.

(3) 若补充条件是③ $S_3 = -27$,

$$\pm S_3 = a_1 + a_2 + a_3 = 3a_2 = -27$$
,

得
$$a_2 = -9$$
,

$$\mathbb{Z} a_5 = b_1 = -1 = a_2 + 3d$$
,

所以
$$d = \frac{a_5 - a_2}{3} = \frac{8}{3}$$
,

所以
$$a_n = a_1 + (n-1)d = a_2 + (n-2)d = -9 + \frac{8}{3}(n-2) = \frac{8}{3}n - \frac{43}{3}$$
,

由等差数列 $\{a_n\}$ 的前n项和 S_n 存在最小值,

得
$$\frac{35}{8} \le k \le \frac{43}{8}$$
,

又 $k \in \mathbb{N}^*$, 所以k = 5,

所以存在k=5, 使得 S_n 取最小值,

所以
$$\lambda \leq S_5 = -\frac{95}{3}$$
,

故实数 λ 的取值范围为 $\left(-\infty, -\frac{95}{3}\right]$.

18. (本小题满分12分)

(1)
$$f(x) = -\cos 2x + \sqrt{3}\sin 2x = 2\sin\left(2x - \frac{\pi}{6}\right)$$
,

$$2x - \frac{\pi}{6} = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$
, $\# = \frac{\pi}{3} + \frac{k\pi}{2}$, $k \in \mathbb{Z}$,

∴函数
$$f(x)$$
 的对称轴为 $x = \frac{\pi}{3} + \frac{k\pi}{2}$, $k \in \mathbb{Z}$,

$$\Rightarrow \frac{\pi}{2} + 2k\pi \le 2x - \frac{\pi}{6} \le \frac{3\pi}{2} + 2k\pi, k \in \mathbb{Z}, \quad \text{if } \# \frac{\pi}{3} + k\pi \le x \le \frac{5\pi}{6} + k\pi, k \in \mathbb{Z},$$

$$\diamondsuit - \frac{\pi}{2} + 2k\pi \le 2x - \frac{\pi}{6} \le \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}, \quad \text{if } \exists -\frac{\pi}{6} + k\pi \le x \le \frac{\pi}{3} + k\pi, k \in \mathbb{Z},$$

$$\therefore f(x)$$
 的递减区间为: $\left[\frac{\pi}{3} + k\pi, \frac{5\pi}{6} + k\pi\right]$, $k \in \mathbb{Z}$; 递增区间为: $\left[-\frac{\pi}{6} + k\pi, \frac{\pi}{3} + k\pi\right]$, $k \in \mathbb{Z}$.

(2) 由 (1) 知
$$f(x) = 2\sin\left(2x - \frac{\pi}{6}\right)$$
,

∴在△
$$ABC$$
中 $f(A) = 2$, ∴ $\sin\left(2A - \frac{\pi}{6}\right) = 1, -\frac{\pi}{6} < 2A - \frac{\pi}{6} < \frac{7\pi}{6}$,

$$\therefore 2A - \frac{\pi}{6} = \frac{\pi}{2}, \quad \therefore A = \frac{\pi}{3}, \quad \angle \cos B = \frac{1}{7}, \quad \therefore \sin B = \frac{4\sqrt{3}}{7},$$

$$\therefore \sin C = \sin(A+B) = \frac{\sqrt{3}}{2} \times \frac{1}{7} + \frac{1}{2} \times \frac{4\sqrt{3}}{7} = \frac{5\sqrt{3}}{14},$$

在
$$\triangle ABC$$
 中,由正弦定理 $\frac{c}{\sin C} = \frac{a}{\sin A}$,得 $\frac{5}{5\sqrt{3}} = \frac{a}{\sqrt{3}}$, $\therefore a = 7$, $\therefore BD = \frac{7}{2}$,

在 $\triangle ABD$ 中,由余弦定理得

$$AD^{2} = AB^{2} + BD^{2} - 2AB \times BD \times \cos B = 5^{2} + \left(\frac{7}{2}\right)^{2} - 2 \times 5 \times \frac{7}{2} \times \frac{1}{7} = \frac{129}{4},$$

$$\therefore AD = \frac{\sqrt{129}}{2}.$$

19. (本小题满分12分)

(1)利用模型①,可得该地区 2018 年的环境基础设施投资额的预测值为 $y = -30.4 + 13.5 \times 19 = 226.1$ (亿元).

利用模型②,可得该地区 2018 年的环境基础设施投资额的预测值为 $y = 99 + 17.5 \times 9 = 256.5$ (亿元). (2)利用模型②得到的预测值更可靠.

理由如下:

- (i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线 y=-30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.
- (ii)从计算结果看,相对于 2016 年的环境基础设施投资额 220 亿元,由模型①得到的预测值 226.1 亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.

20. (本小题满分12分)

(1)
$$\partial P(x_1, y_1)$$
, $Q(x_2, y_2)$,

$$\therefore F\left(0,\frac{p}{2}\right),$$

设直线 PQ 方程为: $y = kx + \frac{p}{2}$, $k \in \mathbb{R}$,

由
$$\begin{cases} x^2 = 2py \\ y = kx + \frac{p}{2}, & \text{ } \# x^2 - 2pkx - p^2 = 0, \end{cases}$$

$$\therefore x_1 + x_2 = 2pk$$
, $x_1x_2 = -p^2$,

则两平行光线距离 $d = |x_1 - x_2| = \sqrt{4p^2k^2 + 4p^2} \ge 2p$,

 $\therefore 2p = 8$, 故抛物线方程为 $x^2 = 8y$.

(2) 设
$$A(x_1, y_1)$$
, $B(x_2, y_2)$, A , B 中点 $M(x_0, y_0)$

由
$$\begin{cases} x^2 = 8y \\ y = x + m \end{cases}$$
, 得 $x^2 - 8x - 8m = 0$, $\Delta > 0 \Rightarrow m > -2$,

$$\therefore x_0 = \frac{x_1 + x_2}{2} = 4$$
, $y_0 = 4 + m$,

 $: MT \perp AB$,

$$\therefore x^2 - 8x - 9 = 0 \Rightarrow x_1 = -1, \quad x_2 = 9,$$

$$\therefore |AB| = \sqrt{1+1^2} |x_1 - x_2| = 10\sqrt{2}.$$

21. (本小题满分 12 分)

解: (1) 易得函数 f(x) 的定义域为 $(0,+\infty)$.

对函数 f(x) 求导得: $f'(x) = \frac{1}{x} - ax$.

当 $a \le 0$ 时,f'(x) > 0恒成立,即可知f(x)在 $(0,+\infty)$ 上单调递增;

故
$$f(x)$$
 在 $\left(0, \frac{\sqrt{a}}{a}\right)$ 上单调递增,在 $\left(\frac{\sqrt{a}}{a}, +\infty\right)$ 上单调递减.

(2)
$$\stackrel{\text{def}}{=} a = 1 \text{ iff}, \quad f(x) = \ln x - \frac{1}{2}x^2 + 1, \quad f'(x) = \frac{1}{x} - x = \frac{1 - x^2}{x},$$

此时f(x)在(0,1)上单调递增,在 $(1,+\infty)$ 上单调递减.

$$f\left(x\right)_{\text{W} imes \text{th}} = f\left(1\right) = \frac{1}{2} > 0$$
, $\forall f\left(\frac{1}{e}\right) < 0$, $f\left(e\right) < 0$,

不妨设 $x_1 < x_2$,则有 $0 < x_1 < 1 < x_2$,

$$\Rightarrow F(x) = f(x) - f(2-x), x \in (0,1),$$

$$F'(x) = f'(x) + f'(2-x) = \frac{1-x^2}{x} + \frac{1-(2-x)^2}{2-x} = \frac{2(1-x)^2}{x(2-x)}.$$

当 $x \in (0,1)$ 时,F'(x) > 0,F(x)单调递增,

$$x_1 \in (0,1)$$
, $f(x_1) = f(x_1) - f(2-x_1) < F(1) = 0$,

$$\therefore f(x_1) < f(2-x_1),$$

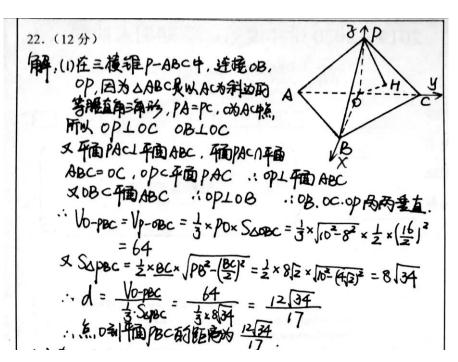
$$\mathbb{Z}$$
: $f(x_1) = f(x_2) = 0$, : $f(x_2) < f(2-x_1)$,

$$x_2 > 1$$
, $2 - x_1 > 1$, $f(x)$ 在 $(1,+\infty)$ 上单调递减,

$$\therefore x_2 > 2 - x_1$$
, $\bowtie x_1 + x_2 > 2$.

22. (本小题满分12分)

(1) 点 *O* 到平面 *PBC* 的距离为
$$\frac{12\sqrt{34}}{17}$$



(2) PH 与平面 ABC 所成角的正弦值的取值范围为 $\left[\frac{3}{5}, \frac{3\sqrt{17}}{17}\right]$.

以选条件①为例(亦可使用综合法、综合与向量混用法)

```
(2)在三楼锥P-ABC中,以O为生标原系,「OB,OC,OP)为正发基
  底。建如图所示的空间直角生标。0-xy3.
  DO(0,0,0), p(0,0,6), A(0,-8,0), c(0,8,0)
     B(8,0,0),设H(x,4,3)
  例 研= (x,y,3), 所= (x,y,3-6), 所= (0,-8,-6)

所= (8,0,-6), 戸= (0,8,-6)

设年面PAB的法局量为元=(x,y,3,),州
   (元) PB=0 即 (-84,63,=0 即 (X=生) 不知金生-3
一切・PB=0 即 (-84,63,=0 即 (X=生) 不知金生-3
  网络亨丰得阿PBC的法质量 元=(3,3,4)
(选条件①) 因为 OH《种的PAB, PH C种的PBC
  ·· (研·不=0 即 (3X-沙+43=0 即 (8=3-辛X)
一种: 尼=0 即 (3X+沙+43-24=0 即 (8=4)
  · H(X,4,3-是火)
  $ { 0 ≤ x € 8
     10=3-=10 ·· 0=x=4 ·· PH=(x,4,-3-=x)
  又 OP L F (a) ABC 1、 76 = (0,0,1) 是 T (a) ABC 前一个 法 向 量
  金七年十, 七年[1.2], 七年[2.1]
   金州等于一类十、七三之、州在区门上明连增的州民等一类一、河上等一类十、七三之、州东区、河上等区、河上等区、河上等区、河上等区、河上等区、河上等区域。
 ··直的叶与中面ABC研究的正弦位的单位范围的[三 河]
进条件②条件③结果相同
```