仪征中学 2019 届数学一轮复习补偿训练(2) 9.18

班级	学号	姓名	成绩	•
一、填空题:				
1、若将函数 <i>y</i> = cos.	$x - \sqrt{3} \sin x$ 的图象	向左移 $m(m>0)$	个单位后,所得图象关于 y 轴x	付称,
则实数 m 的最小值为	$\frac{2\pi}{3}$			
		平移 $\varphi\left(0 < \varphi < \frac{\pi}{2}\right)$	个单位后,所得函数图象关于	- 原点
或中心对称,则 φ =_	$\frac{3\pi}{8}$			
S 、已知圆 $C: x^2 + y^2$	$x^2 - 4x - 2y - 20 =$	0 ,直线 <i>l</i> ∶4 <i>x</i> −3	Sy+15=0与圆 C 相交于 A、E	B 两点
)为圆 C 上异于 A,B	两点的任一点,则人	△ABD 面积的最大	值为 27	
4、已知函数 f (x) = x	x-2 ,则不等式	f (√2−x) ≤f (1) fi	为解集为 [- 1 , +	.∞)
5、已知直线 <i>l: mx</i> +;	y+3 <i>m</i> −√3=0与圆	$ x^2+y^2 = 12$ 交子 A	<i>A,B</i> 两点,过 <i>A,B</i> 分别作 <i>l</i> 的	J垂线
与 x 轴交于 C , D 两点	烹,若 AB =2√3,贝	₩ <i>CD</i> =	4	
5、已知点 $A(2,3)$,月 $\overrightarrow{AP}\cdot\overrightarrow{BP}+2\lambda=0$ $\stackrel{ ext{fig.}}{BP}$			=0上,若满足等式 · (-∞,2)	
二、解答题:				
7、已知圆 $M: x^2 +$	$y^2 - 2x + a = 0$			

(2) 若 AB 为圆 M 的任意一条直径,且 $\overrightarrow{OA} \cdot \overrightarrow{OB} = -6$ (0 为坐标原点),求圆 M 的半径.

(1) 若a = -8, 过点P(4,5)作圆M的切线, 求该切线方程;

解: (1) 若 a=-8,圆 M: $(x-1)^2+y^2=9$,圆心 M (1,0),半径为 3.2 分

若切线斜率不存在,圆心M到直线x=4的距离为3,

所以直线x=4为圆M的一条切线;

-----4分

若切线斜率存在,设切线方程为: y-5=k(x-4),化简为: kx-y-4k+5=0,则圆心到直线的距离 $\frac{|k-4k+5|}{\sqrt{k^2+1}}=3$,解得: $k=\frac{8}{15}$.

所以切线方程为x=4或8x-15y+43=0;

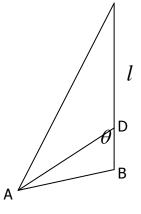
……7分

(2) 圆M 的方程可化为 $(x-1)^2 + y^2 = 1 - a$,圆心M (1.0),则OM = 1

设圆的半径 $r = \sqrt{1-a}(a < 1)$

.....9 分

- 8、如图,某市在海岛 A 上建了一水产养殖中心。在海岸线 *I* 上有相距 70 公里的 B、C 两个小镇,并且 AB=30 公里,AC=80 公里,已知 B 镇在养殖中心工作的员工有 3 百人,C 镇在养殖中心工作的员工有 5 百人。现欲在 BC 之间建一个码头 D,运送来自两镇的员工到养殖中心工作,又知水路运输与陆路运输每百人每公里运输成本之比为 1:2.
 - (1) 求 sin ∠ABC 的大小;
 - (2) 设 $\angle ADB = \theta$, 试确定 θ 的大小, 使得运输总成本最少.



解: (1) 在
$$\triangle ABC$$
 中, $\cos \angle ABC = \frac{AB^2 + BC^2 - AC^2}{2AB \cdot BC} = \frac{900 + 4900 - 6400}{2 \times 30 \times 70} = -\frac{1}{7}$ …3 分

(2) 在
$$\triangle ABD$$
 中,由 $\frac{AD}{\sin \angle ABD} = \frac{AB}{\sin \theta} = \frac{BD}{\sin \angle BAD}$ 得: $\frac{30}{\sin \theta} = \frac{AD}{\frac{4\sqrt{3}}{7}} = \frac{BD}{-\frac{1}{7}\sin \theta + \frac{4\sqrt{3}}{7}\cos \theta}$

设水路运输的每百人每公里的费用为k元,陆路运输的每百人每公里的费用为2k元,则运输总费用 $y=(5CD+3BD)\times 2k+8\times k\times AD=2k[5(70-BD)+3BD+4AD]$

$$= 20k[35 - 2(\frac{12\sqrt{3}}{\sin \theta} - \frac{3}{7}) + 4 \times \frac{12\sqrt{3}}{\sin \theta}] = 20k[35 + \frac{6}{7} + \frac{24\sqrt{3}}{7} \cdot \frac{2 - \cos \theta}{\sin \theta}] \qquad \cdots 11 \ \%$$

令
$$H(\theta) = \frac{2 - \cos \theta}{\sin \theta}$$
,则 $H'(\theta) = \frac{1 - 2\cos \theta}{\sin^2 \theta}$,设 $H'(\theta) = 0$,解得: $\cos \theta = \frac{1}{2}, \theta = \frac{\pi}{3}$

此时
$$BD = \frac{\frac{120\sqrt{3}}{7}\cos\theta}{\sin\theta} - \frac{30}{7} = \frac{90}{7}$$
,满足 $0 < \frac{90}{7} < 70$,所以点 D 落在 BC 之间

所以 $\theta = \frac{\pi}{3}$ 时,运输总成本最小.

答:
$$\theta = \frac{\pi}{3}$$
 时,运输总成本最小.16 分