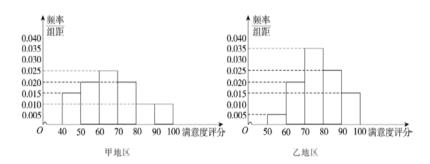
江苏省仪征中学 2020-2021 学年度高三数学寒假自主练习(7)

命题人・高三数学组 校对人・高三数学组


- 一、选择题:本小题共8小题。每小题5分。共40分。在每小题给出的四个选项中。只 有一项是符合题目要求的.
- $A. \{x | 1 < x \le 2\}$

B. {x| − 2 < x < −1 或 1 < x < 2}

 $C.\{x|-2 \le x < -1\}$

- $D. \{x | -2 \le x < -1$ 或 $1 < x \le 2 \}$
- 2.复数z满足: z(1+i) = 1-i,则z的虚部等于(
- A. -i
- B. -1
- C.0

- D.1
- 3. 某公司为了解用户对其产品的满意度,从甲、乙两地区分别随机调查了100个用户, 根据用户对产品的满意度评分,分别得到甲地区和乙地区用户满意度评分的频率分布直 方图.

若甲地区和乙地区用户满意度评分的中位数分别为 m_1 , m_2 ;标准差分别为 s_1 , s_2 ,则

A. $m_1 > m_2$, $s_1 > s_2$

下面正确的是()

B. $m_1 > m_2$, $s_1 < s_2$

 $C. m_1 < m_2, s_1 < s_2$

 $D. m_1 < m_2, s_1 > s_2$

- 4.设 $a = 5^{0.4}$, $b = \log_{0.4} 0.5$, $c = \log_5 0.4$,则a,b,c的大小关系是(
- A. a < b < c B. c < a < b
- C.c < b < a D. b < c < a
- 5. 已知 α 是第二象限角, $\sin \alpha = \frac{4}{5}$,则 $\sin 2\alpha = ($)
- A. $-\frac{24}{25}$
- B. $\frac{24}{25}$
- $C.-\frac{12}{25}$ $D.\frac{12}{25}$

6. 四个人排一个五天的值班表,每天一人值班,并且每个人至少值班一次,则有(种不同的排班方式.

- A. 240
- B.480
- C.420
- D. 360

7.已知抛物线 $C: y^2 = 2px(p>0),$	过焦点 F 的直线 l	交抛物线 $C \pm P \cdot Q$ 两点	ā,交y轴于点
A,若点 P 为线段 FA 的中点,且 $ FQ$	=2,则 p 的值为	1()	
A. $\frac{2}{3}$ B. $\frac{4}{3}$	C. 2	D. 3	
8. 在底面边长为 1 的正四棱柱 ABG	$CD - A_1B_1C_1D_1 \stackrel{\text{th}}{=} $,侧棱长等于 2,则()
A. 在正四棱柱的棱上到异面直线A	A_1B 和 C_1C 距离相等	的点有且只有一个	
B. 在正四棱柱的棱上到异面直线A	A_1B 和 C_1C 距离相等	等的点有且只有两个	
C. 在正四棱柱的棱上到异面直线A	A_1B 和 C_1C 距离相等	的点有且只有三个	
D. 在正四棱柱的棱上到异面直线A	A_1B 和 C_1C 距离相等	的点有且只有四个	
二、选择题:本小题共 4 小题,每 多项符合题目要求,全部选对得 5	•		个选项中,有
9. 已知等比数列 $\{a_n\}$ 的前 n 项和为 S_n	$_n$, 公比 $q > 1$, n	∈ N ₊ ,则()	
- 10-		递增数列也可能是递减	数列
$C.a_3$ 、 a_7 、 a_{11} 仍成等比	$D. \ \forall n \in N_+, S_n$	≠ 0	
10 .定义在实数集 <i>R</i> 上的函数 <i>f(x)</i> 满增则()	足 $f(1+x) = -f($	$(1-x)$,且 $x \ge 1$ 时函	数 <i>f(x</i>)单调递
A. f(1) = 0	<i>B.f(x)</i> 是周期函		
C.方程 $f(x) = 0$ 有唯一实数解	D.函数 <i>f</i> (x)在(-	-∞,0)内单调递减	
11.为了得到 $y = 2\sin(2x - \frac{\pi}{3})$ 的图	图像只需把函数 y =	$=2\cos(2x+\frac{\pi}{6})$ 的图像	象 ()
A .向右平移 $\frac{\pi}{2}$	B .向左平移 $\frac{\pi}{2}$		
C .关于直线 $x = \frac{\pi}{4}$ 轴对称	<i>D</i> .关于直线 <i>x</i> =	$\frac{\pi}{6}$ 轴对称	
12.方程 $e^x + x - 2 = 0$ 的根为 x_1 ,la	nx + x - 2 = 0的	艮为 x₂,则 ()	
A. $\frac{x_1}{x_2} > \frac{1}{2}$	$B.x_1 \ln x_2 + x_2 \ln x_1$	$x_1 < 0$	
$C.e^{x_1} + e^{x_2} < 2e$	$D. x_1 x_2 < \frac{\sqrt{e}}{2}$		

三、填空题:本小题共4小题,每小题5分,共20分.

13.已知
$$F_1, F_2$$
 为双曲线 $\frac{x^2}{16} - \frac{y^2}{9} = 1$ 的左、右焦点,则 $|F_1F_2| =$ _______

- 14. 已知正实数a、b满足a + 2b = 1,则 $\frac{2}{a} + \frac{1}{b}$ 的最小值为_____
- **15**.某校为了丰富学生的课余生活,组建了足球、篮球、排球、羽毛球四个兴趣小组,要求每一名学生选择其中的两个小组参加.现有 A,B,C,D 四位同学,已知A与B没有选择相同的兴趣小组,C与D没有选择相同的兴趣小组,B与C选择的兴趣小组恰有一个相同,且 B选择了足球兴趣小组.给出如下四个判断:
- ①C可能没有选择足球兴趣小组;②A、D选择的两个兴趣小组可能都相同;
- ③D可能没有选择篮球兴趣小组; ④这四人中恰有两人选择足球兴趣小组;

其中正确判断是

16.已知 $\vec{a}, \vec{b}, \vec{c}$ 是平面向量, \vec{a}, \vec{c} 是单位向量,且 $<\vec{a}, \vec{c}>=\frac{\pi}{3}$,若 $\vec{b}^2 - 9\vec{b} \cdot \vec{c} + 20 = 0$,则

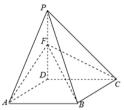
$2\vec{a}-\vec{b}$	最大值是

四、解答题: 本题共 6 道小题, 共 70 分.解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分 10 分)

在① $ac = 4\sqrt{7}$ ② $\sin B = 2\sin A$ ③ $\cos \ln A = \sqrt{3}$ 这三个条件中任选一个,补充在下面的问题中,若问题中的三角形存在,求 c 值,若问题中的三角形不存在,说明理由.

问题: 是否存在 $\triangle ABC$,它的内角 A,B,C 所对的边分别为 a,b,c ,且 $b\cos A + a\cos B + 2c\cos C = 0$, $\triangle ABC$ 的面积是 $2\sqrt{3}$,

18.(本小题满分 12 分)


某公司在联欢活动中设计了一个摸奖游戏,在一个口袋中装有3个红球和4个白球,这些球除颜色外完全相同.游戏参与者可以选择有放回或者不放回的方式从中依次随机摸出3个球,规定至少摸到两个红球为中奖.现有一位员工参加此摸奖游戏.

- (1)如果该员工选择有放回的方式(即每摸出一球记录后将球放回袋中再摸下一个)摸球,求他能中奖的概率;
- (2)如果该员工选择不放回的方式摸球,设在他摸出的3个球中红球的个数为X,求X的分布列和数学期望:
 - (3) 该员工选择哪种方式摸球中奖的可能性更大?请说明理由.

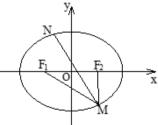
19. (本小题满分 12 分)

在四棱锥P-ABCD中,PD 上底面ABCD,底面ABCD是菱形,PD=AD=4, $\angle BAD=60^{\circ}$,点F在棱PD上.

- (1) 若 $PF = \frac{1}{2}PD$,在棱BC上是否存在一点E,使得CF//平面PAE,并说明理由;
- (2) 若直线AF与平面BCF所成的角的正弦值是 $\frac{\sqrt{15}}{10}$,求二面角A-FB-C的余弦值.

20. (本小题满分 12 分)

已知数列 $\{a_n\}$ 前 n 项和为 S_n ,且 $a_1=3$, $S_n=a_{n+1}-1$,数列 $\{b_n\}$ 为等差数列, $a_2=b_4$,且 $b_2+b_5=b_7$,


(I) 求数列 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式;

(II) 若
$$c_n = \frac{a_n b_n}{(n+2)b_{n+1}}$$
, 求 $\{c_n\}$ 的前 n 项和 T_n .

21. (本小题满分 12 分)

已知椭圆 Γ 中心在坐标原点,焦点 F_1 、 F_2 在x轴上,离心率 $e=\frac{1}{2}$,经过点M(c,-3)(c为椭圆的半焦距).

- (1)求椭圆Γ的标准方程;
- $(2) \angle F_1 M F_2$ 的平分线l与椭圆的另一个交点为N,O为坐标原点,求直线OM与直线ON斜率的比值.

22. (本小题满分 12 分)

设函数 $f(x) = (1+ax)e^{-2x}$, 曲线 y = f(x) 在 (0, f(0)) 处的切线方程为 y = -x+1.

- (1) 求实数a的值.
- (2) 求证: $\exists x \in [0,1]$ 时, $2f(x) 2 \ge x(x^2 + 4\cos x 6)$.