1酶催化作用的特点
生物体内的各种化学反应,几乎都是由酶催化的。酶所催化的反应叫酶促反应。酶促反应中被酶作用的物质叫作底物。经反应生成的物质叫作产物。酶作为生物催化剂,与一般催化剂有相同之处,也有其自身的特点。
相同点:(1)改变化学反应速率,本身不被消耗;(2)只能催化热力学允许进行的反应;(3)加快化学反应速率,缩短达到平衡的时间,但不改变平衡点;(4)降低活化能,使化学反应速率加快。
不同点(酶的特点):(1)高效性,指催化效率很高,使得反应速率很快;(2)专一性,任何一种酶只作用于一种或几种相关的化合物,这就是酶对底物的专一性;(3)多样性,指生物体内具有种类繁多的酶;(4)易变性,由于大多数酶是蛋白质,因而会被高温、强酸、强碱等破坏;(5)反应条件的温和性,酶促反应在常温、常压、生理pH条件下进行;(6)酶的催化活性受到调节、控制;(7)有些酶的催化活性与辅因子有关。
2酶的化学本质及其组成
酶的化学本质除了具有催化活性的RNA之外几乎都是蛋白质。但是,不能说所有的蛋白质都是酶,只是具有催化作用的蛋白质,才称为酶。
证明酶的化学本质是蛋白质的证据有以下几条。
(1)酶经酸或碱水解后的最终产物是氨基酸,酶能被蛋白酶水解而失活。
(2)酶是具有空间结构的生物大分子,凡使蛋白质变性的因素都可使酶变性失活。
(3)酶是两性电解质,在不同pH下呈现不同的离子状态,在电场中向某一电极泳动,各具有特定的等电点。
(4)酶和蛋白质一样,具有不能通过半透膜等胶体的性质。
(5)酶也有蛋白质所具有的化学呈色反应。
(6)酶与蛋白质的相对分子质量相似,结构相似。
(7)酶在物理、化学因素作用下,也可变性沉淀。
(8)做元素分析,酶与蛋白质的元素含量相似,可以用氨基酸人工合成酶。
按照酶的化学组成可以将酶分为以下两类。
(1)单纯蛋白质酶
有些酶只是肽链,除了氨基酸不含任何其他化学物质,也就是说有些酶是单纯的蛋白质,如胰腺的核糖核酸酶、淀粉酶等。
(2)结合蛋白质酶
有些酶除了蛋白质外,还含有一些对热稳定的非蛋白质类小分子物质或金属离子,即由蛋白质部分和非蛋白质部分组成。结合蛋白质酶的蛋白质部分称为脱辅酶,非蛋白质部分称为辅因子。脱辅酶与辅因子结合后所形成的复合物称为“全酶”,即全酶=脱辅酶+辅因子。在酶催化时,一定要有脱辅酶和辅因子同时存在才起作用,二者各自单独存在时,均无催化作用。脱辅酶部分决定酶催化的专一性,辅酶(辅基)在酶催化中通常起着电子、原子或某些化学基团的传递作用,大部分辅酶是维生素或维生素的衍生物。
3酶的简单分类
国际酶学委员会(L.E.C)规定,按酶促反应的性质,可把酶分成六大类。
(1)氧化还原酶类 指催化氧化还原反应的酶类,又可分为氧化酶和脱氢酶两类,如乳酸脱氢酶、琥珀酸脱氢酶、细胞色素氧化酶、过氧化氢酶等。
(2)转移酶类 指催化化合物某些基团的转移,即将一种分子上的某一基团转移到另一种分子上的酶类,如转甲基酶、转氨酶、己糖激酶、磷酸化酶等。
(3)水解酶类 指催化底物发生水解反应的酶类,如淀粉酶、蛋白酶、脂肪酶、磷酸酶等。
(4)裂合酶类 指催化从底物移去一个基团而形成双键的反应及其逆反应的酶类,如柠檬酸合成酶、醛缩酶等。
(5)异构酶类 指催化各种同分异构体之间相互转化的酶类,如磷酸丙糖异构酶、消旋酶等.
(6)连接酶类 指催化两分子底物合成为一分子化合物,同时还必须偶联有ATP的磷酸键断裂的酶类,如谷氨酰胺合成酶、氨基酸-tRNA连接酶等。
4酶的作用机理
酶催化反应的某些独特性质为许多酶促反应所共有,可概括如下。
(1)酶反应可分为两类,一类反应仅仅涉及电子的转移,另一类反应涉及电子和质子两者或者其他基团的转移,大部分反应属于第二类。
(2)酶的催化作用是以氨基酸侧链上的功能基团或辅酶为媒介的。
(3)酶催化化学反应的最适pH范围通常是狭小的。
(4)与底物相比较,酶分子很大,而活性部位通常只比底物稍大一些。这是因为在大多数情况下,只有活性部位围着底物。此外,一个巨大的酶结构对稳定活性部位的构象是必要的。
(5)酶除了具有催化化学反应所必需的活性基团外,还有别的特性,使酶促反应的进行更有利,并使更复杂的多底物反应按一定途径进行,这些已超过了简单催化剂的范畴。酶的复杂的折叠结构使这些作用成为可能。
5影响酶作用的因素
酶的催化活性的强弱以单位时间(每分)内底物减少量或产物生成量来表示。研究某一因素对酶促反应速率的影响时,应在保持其他因素不变的情况下,单独改变研究的因素。影响酶促反应的因素常有:酶的浓度、底物浓度、pH、温度、抑制剂、激活剂等。其变化规律有以下特点。
(1)酶浓度对酶促反应的影响
在底物足够,其他条件固定的情况下,反应系统中不含有抑制酶活性的物质及其他不利于酶发挥作用的因素时,酶促反应的速率与酶浓度成正比。
(2)底物浓度对酶促反应的影响
在底物浓度较低时,反应速率随底物浓度增加而加快,反应速率与底物浓度近乎成正比;在底物浓度较高时、底物浓度增加,反应速率也随之加快,但不显著;当底物浓度很大,且达到一定限度时,反应速率就达到一个最大值,此时即使再增加底物浓度,反应速率几乎不再改变。
(3)pH对酶促反应的影响
每一种酶只能在一定限度的pH范围内才表现活性,超过这个范闱酶就会失去活性。在一定条件下,每一种酶在某一个pH时活力最大,这个pH称为这种酶的最适pH。
(4)温度对酶促反应的影响
在一定温度范围内,酶促反应速率随温度的升高而加快:但当温度升高到一定限度时,酶促反应速率不仅不再加快反而随着温度的升高而下降。在一定条件下,每一种酶在某一温度时活力最大,这个温度称为这种酶的最适温度。
(5)激活剂对酶促反应的影响
激活剂可以提高酶活性,但不是酶活性所必需的。激活剂大致分两类:无机离子和小分子化合物。
(6)抑制剂对酶促反应的影响
抑制剂使酶活性下降,但不使酶变性。抑制剂的作用机制分两种:可逆的抑制作用和不可逆的抑制作用。
6酶研究的历史与现状
新陈代谢是生命活动的基础,是生命活动最重要的特征。而构成新陈代谢的许多复杂而有规律的物质变化和能量变化,都是在酶催化下进行的。生物的生长发育、繁殖、遗传、运动、神经传导等生命活动都与酶的催化过程紧密相关,可以说,没有酶的参加,生命活动一刻也不能进行。因此,从酶作用的分子水平上研究生命活动的本质及其规律无疑是十分重要的。
人们对酶的认识起源于生产和生活实践。我国人民在8000年以前就开始利用酶。约公元前21世纪夏禹时代,人们就会酿酒。公元前12世纪周代已能制作饴糖和酱。2000多年前,春秋战国时期已知用粬治疗消化不良的疾病。凡此种种情况都说明,虽然我们祖先并不知道酶为何物,也无法了解其性质,但根据生产和生活经验的积累,已把酶利用到相当广泛的程度。
【打印本页】【关闭窗口】 |