【推荐阅读】蛋白质合成

来源:仪征中学 时间:2021-12-25
 

对蛋白质折叠机理的研究,对保留蛋白质活性,维持蛋白质稳定性和包涵体蛋白质折叠复性都具有重要的意义(21)。早在上世纪30年代,我国生化界先驱吴宪教授就对蛋白质的变性作用进行了阐释(8),30年后,Anfinsen通过对核糖核酸酶A的经典研究表明去折叠的蛋白质在体外可以自发的进行再折叠,仅仅是序列本身已经包括了蛋白质正确折叠的所有信息(9,10),并提出蛋白质折叠的热力学假说,为此Anfinsen获得1972年诺贝尔化学奖。这一理论有两个关键点:1蛋白质的状态处于去折叠和天然构象的平衡中;2 天然构象的蛋白质处于热力学最低的能量状态。尽管蛋白质的氨基酸序列在蛋白质的正确折叠中起着核心的作用,各种各样的因素,包括信号序列,辅助因子,分子伴侣,环境条件,均会影响蛋白质的折叠,新生蛋白质折叠并组装成有功能的蛋白质,并非都是自发的,在多数情况下是需要其它蛋白质的帮助,已经鉴定了许多参与蛋白质折叠的折叠酶和分子伴侣(3,16,86),蛋白质“自发折叠”的经典概念发生了转变和更新,但这并不与折叠的热力学假说相矛盾,而是在动力学上完善了热力学观点。在蛋白质的折叠过程中,有许多作用力参与,包括一些构象的空间阻碍,范德华力,氢键的相互作用,疏水效应,离子相互作用,多肽和周围溶剂相互作用产生的熵驱动的折叠(12,52),但对于蛋白质获得天然结构这一复杂过程的特异性,我们还知之甚少,许多实验和理论的工作都在加深我们对折叠的认识,但是问题仍然没有解决。

在折叠的机制研究上早期的理论认为,折叠是从变性状态通过中间状态到天然状态的一个逐步的过程,并对折叠中间体进行了深入研究,认为折叠是在热力学驱动下按单一的途径进行的。后来的研究表明折叠过程存在实验可测的多种中间体,折叠通过有限的路径进行。新的理论强调在折叠的初始阶段存在多样性,蛋白质通过许多的途径进入折叠漏斗(folding funnel),从而折叠在整体上被描述成一个漏斗样的图像,折叠的动力学过程被认为是部分折叠的蛋白质整体上的进行性装配,并且伴随有自由能和熵的变化,蛋白质最终寻找到自己的正确的折叠结构,这一理论称为能量图景(energy landscape),如图3所示,漏斗下方的凹凸反映蛋白质构象瞬间进入局部自由能最小区域(13,14)。

图3:能量图景(The energy landscape)的示意图,高度代表能量尺度,宽度代表构象尺度,在漏斗(funnel)的下方存在别的低能量状态,共存的不同能量状态的蛋白质种类也降到最小(14)。

这一理论认为结构同源的蛋白质可以通过不同的折叠途径形成相似的天然构象,人酸性成纤维生长因子(hFGF-1)和蝾螈酸性成纤维生长因子(nFGF-1)氨基酸序列具有约80%同源性,并且具有结构同源性(12个β折叠反向平行排列形成β折叠桶),在盐酸胍诱导去折叠的过程中,hFGF-1可以监测到具有熔球体样的折叠中间体,而nFGF-1经由两态(天然状态到变性状态)去折叠,没有检测到中间体的存在,折叠的动力学研究也表明两种蛋白采用不同的折叠机制(38)。对于同一蛋白质,采用的渗透压调节剂(osmolytes)不同,蛋白质折叠的途径也不相同,说明不同的渗透压调节剂对蛋白质的稳定效应不同(11)。这两个例子都说明折叠机制的复杂性,也与上面所介绍的理论相吻合。

 
打印本页】【关闭窗口