江苏省仪征中学 2024-2025 学年度第一学期高三数学学科导学案 平面向量的数量积

	研制人: 居璇	审核人: 冯杰	
班级:	姓名:	学号:	授课日期:
【课标要求】 1. 通过物理中功等实例,理 2. 会用数量积判断两个平面 【基础训练】	向量的垂直关系,并求统	解两个平面向量的夹角。	与模。
1. 已知单位向量 a,b 的夹角	角为 $\frac{3}{4}\pi$,若向量 $m=2a$	$n = 4a - \lambda b$, $\perp m \perp n$,则 $ n $ = ()
	4 C. 8		
2. 已知向量 a , b 满足 $ a $ = A. 4 B. 3 3. 已知向量 a =(2, 3), b = A. $\sqrt{2}$ B.	3 C. 2 =(3, 2), 则 a-b =(D. 0	
4. 己知矩形 <i>ABCD</i> 中, <i>ĀĒ</i> A. 20 B.		N 满足 $\overrightarrow{BM} = 3\overrightarrow{MC}$, \overrightarrow{DMC}	Ň=2 <i>NC</i> ,则 <i>AM·NM</i> 等于 (
5. 若 $ \vec{a} = \sqrt{2}$, $ \vec{b} = 2$,且 A. $\frac{\pi}{6}$ B. $\frac{\pi}{6}$,		
6. (多选)在△ <i>ABC</i> 中, <i>ĀB</i> = A.若 <i>a·b</i> >0,则△ <i>ABC</i>) B.若 <i>a·b</i> =0,则△ <i>ABC</i>	为锐角三角形	下列命题中,是真命题	原的为()

【知识梳理】

- 1. 向量的夹角与模
- 2. 平面向量的数量积
- 3. 向量数量积的运算律

C. 若 $a \cdot b = c \cdot b$, 则 $\triangle ABC$ 为等腰三角形

D. $若(a+c-b)\cdot(a+b-c)=0$,则 $\triangle ABC$ 为直角三角形

【例题精讲】

题**型一** 平面向量的模与夹角

例 1. (1)设 a,b 为单位向量,且|a+b|=1,则|a-b|=_____.

(2)已知向量 a, b满足|a|=5, |b|=6, $a \cdot b=-6$, 则 $\cos \langle a, a+b \rangle$ 等于(

- A. $-\frac{31}{35}$ B. $-\frac{19}{35}$ C. $\frac{17}{35}$ D. $\frac{19}{35}$

变式 1 已知单位向量 a,b 的夹角为 45° ,ka-b 与 a 垂直,则 k= .

变式 2 若非零向量a, b满足 $|a| = \frac{2\sqrt{2}}{3}|b|$, 且(a-b) 上(3a+2b), 则a与b的夹角为()

- A. $\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $\frac{3\pi}{4}$ D. π

题型二 平面向量数量积的计算

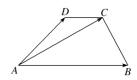
例 2.(1)在四边形 ABCD 中,AD//BC, $AB=2\sqrt{3}$,AD=5, $\angle A=30^{\circ}$,点 E 在线段 CB 的延长线 上,且 AE=BE,则 $\overrightarrow{BD}\cdot\overrightarrow{AE}=$.

(2)已知 P 是边长为 2 的正六边形 ABCDEF 内的一点,则 $\overrightarrow{AP} \cdot \overrightarrow{AB}$ 的取值范围是()

- A. (-2, 6) B. (-6, 2) C. (-2, 4) D. (-4, 6)

变式 1 如图,在梯形 ABCD 中, $AB/\!\!/ CD$,CD=2, $\angle BAD=\frac{\pi}{4}$,若 $\overrightarrow{AB} \cdot \overrightarrow{AC} = 2\overrightarrow{AB} \cdot \overrightarrow{AD}$,

则 $\overrightarrow{AD} \cdot \overrightarrow{AC} =$ ____.



变式 2 已知 P 是边长为 2 的正方形 ABCD 内的一点,则 $\overrightarrow{AP} \cdot \overrightarrow{AB}$ 的取值范围是

变式 3 在 $\triangle ABC$ 中, $C=\frac{\pi}{2}$,AC=BC=2,M为边 AC的中点,若点 P 在边 AB 上运动(点 P 可与 A, B 重合),则 $\overrightarrow{MP} \cdot \overrightarrow{CP}$ 的最小值为 .

【课堂小结】